Jakob Stoklund Olesen 26048c2ecc Move WasmRuntime::translate_call_indirect() into FuncEnvironment.
Add two new arguments:

- table_index is the WebAssembly table referenced in the indirect call.
- sig_index is the WebAssembly signature index. We still have the SigRef
  that was created by make_indirect_sig(), but the WebAssembly signature
  index may be needed for detecting type mismatches at runtime.

Change the insertion location to a plain FuncCursor rather than a
FunctionBuilder<Local>. The fact that cretonne-wasm uses FunctionBuilder
should be an implementation detail, and the callbacks don't need to
access WebAssembly locals, so they don't need the extended interface.

Add a FunctionBuilder::cursor() method which creates a FuncCursor for
inserting instructions in the current EBB.

Also add a FuncEnvironment::translate_call() method which allows the
environment to override direct calls the same way as indirect calls.
2017-09-06 15:18:55 -07:00
2017-08-31 10:44:59 -07:00

=======================
Cretonne Code Generator
=======================

Cretonne is a low-level retargetable code generator. It translates a
target-independent intermediate language into executable machine code.

*This is a work in progress that is not yet functional.*

.. image:: https://readthedocs.org/projects/cretonne/badge/?version=latest
    :target: https://cretonne.readthedocs.io/en/latest/?badge=latest
    :alt: Documentation Status

.. image:: https://travis-ci.org/stoklund/cretonne.svg?branch=master
    :target: https://travis-ci.org/stoklund/cretonne
    :alt: Build Status

Cretonne is designed to be a code generator for WebAssembly with these design
goals:

No undefined behavior
    Cretonne does not have a `nasal demons clause <http://www.catb.org/jargon/html/N/nasal-demons.html>`_, and it won't generate code
    with unexpected behavior if invariants are broken.
Portable semantics
    As far as possible, Cretonne's input language has well-defined semantics
    that are the same on all target architectures. The semantics are usually
    the same as WebAssembly's.
Fast sandbox verification
    Cretonne's input language has a safe subset for sandboxed code. No advanced
    analysis is required to verify memory safety as long as only the safe
    instructions are used. The safe instruction set is expressive enough to
    implement WebAssembly.
Scalable performance
    Cretonne can be configured to generate code as quickly as possible, or it
    can generate very good code at the cost of slower compile times.
Predictable performance
    When optimizing, Cretonne focuses on adapting the target-independent IL to
    the quirks of the target architecture. There are no advanced optimizations
    that sometimes work, sometimes fail.

Building Cretonne
-----------------

Cretonne is using the Cargo package manager format. First, ensure you have
installed a current stable rust (stable, beta, and nightly should all work, but
only stable and beta are tested consistently). Then, change the working
directory to your clone of cretonne and run::

    cargo build

This will create a *target/debug* directory where you can find the generated
binary.

To build the optimized binary for release::

    cargo build --release

You can then run tests with::

    ./test-all.sh

Building the documentation
--------------------------

To build the Cretonne documentation, you need the `Sphinx documentation
generator <http://www.sphinx-doc.org/>`_::

    $ pip install sphinx sphinx-autobuild sphinx_rtd_theme
    $ cd cretonne/docs
    $ make html
    $ open _build/html/index.html

We don't support Sphinx versions before 1.4 since the format of index tuples
has changed.
Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%