The x64 backend currently builds the `RealRegUniverse` in a way that is generating somewhat suboptimal code. In many blocks, we see uses of callee-save (non-volatile) registers (r12, r13, r14, rbx) first, even in very short leaf functions where there are plenty of volatiles to use. This is leading to unnecessary spills/reloads. On one (local) test program, a medium-sized C benchmark compiled to Wasm and run on Wasmtime, I am seeing a ~10% performance improvement with this change; it will be less pronounced in programs with high register pressure (there we are likely to use all registers regardless, so the prologue/epilogue will save/restore all callee-saves), or in programs with fewer calls, but this is a clear win for small functions and in many cases removes prologue/epilogue clobber-saves altogether. Separately, I think the RA's coalescing is tripping up a bit in some cases; see e.g. the filetest touched by this commit that loads a value into %rsi then moves to %rax and returns immediately. This is an orthogonal issue, though, and should be addressed (if worthwhile) in regalloc.rs.
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS with a small install script:
$ curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.
-
Configurable. Whether you need to precompile your wasm ahead of time, generate code blazingly fast with Lightbeam, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!.
It's Wasmtime.