* components: Implement the ability to call component exports This commit is an implementation of the typed method of calling component exports. This is intended to represent the most efficient way of calling a component in Wasmtime, similar to what `TypedFunc` represents today for core wasm. Internally this contains all the traits and implementations necessary to invoke component exports with any type signature (e.g. arbitrary parameters and/or results). The expectation is that for results we'll reuse all of this infrastructure except in reverse (arguments and results will be swapped when defining imports). Some features of this implementation are: * Arbitrary type hierarchies are supported * The Rust-standard `Option`, `Result`, `String`, `Vec<T>`, and tuple types all map down to the corresponding type in the component model. * Basic utf-16 string support is implemented as proof-of-concept to show what handling might look like. This will need further testing and benchmarking. * Arguments can be behind "smart pointers", so for example `&Rc<Arc<[u8]>>` corresponds to `list<u8>` in interface types. * Bulk copies from linear memory never happen unless explicitly instructed to do so. The goal of this commit is to create the ability to actually invoke wasm components. This represents what is expected to be the performance threshold for these calls where it ideally should be optimal how WebAssembly is invoked. One major missing piece of this is a `#[derive]` of some sort to generate Rust types for arbitrary `*.wit` types such as custom records, variants, flags, unions, etc. The current trait impls for tuples and `Result<T, E>` are expected to have fleshed out most of what such a derive would look like. There are some downsides and missing pieces to this commit and method of calling components, however, such as: * Passing `&[u8]` to WebAssembly is currently not optimal. Ideally this compiles down to a `memcpy`-equivalent somewhere but that currently doesn't happen due to all the bounds checks of copying data into memory. I have been unsuccessful so far at getting these bounds checks to be removed. * There is no finalization at this time (the "post return" functionality in the canonical ABI). Implementing this should be relatively straightforward but at this time requires `wasmparser` changes to catch up with the current canonical ABI. * There is no guarantee that results of a wasm function will be validated. As results are consumed they are validated but this means that if function returns an invalid string which the host doesn't look at then no trap will be generated. This is probably not the intended semantics of hosts in the component model. * At this time there's no support for memory64 memories, just a bunch of `FIXME`s to get around to. It's expected that this won't be too onerous, however. Some extra care will need to ensure that the various methods related to size/alignment all optimize to the same thing they do today (e.g. constants). * The return value of a typed component function is either `T` or `Value<T>`, and it depends on the ABI details of `T` and whether it takes up more than one return value slot or not. This is an ABI-implementation detail which is being forced through to the API layer which is pretty unfortunate. For example if you say the return value of a function is `(u8, u32)` then it's a runtime type-checking error. I don't know of a great way to solve this at this time. Overall I'm feeling optimistic about this trajectory of implementing value lifting/lowering in Wasmtime. While there are a number of downsides none seem completely insurmountable. There's naturally still a good deal of work with the component model but this should be a significant step up towards implementing and testing the component model. * Review comments * Write tests for calling functions This commit adds a new test file for actually executing functions and testing their results. This is not written as a `*.wast` test yet since it's not 100% clear if that's the best way to do that for now (given that dynamic signatures aren't supported yet). The tests themselves could all largely be translated to `*.wast` testing in the future, though, if supported. Along the way a number of minor issues were fixed with lowerings with the bugs exposed here. * Fix an endian mistake * Fix a typo and the `memory.fill` instruction
wasmtime
A standalone runtime for WebAssembly
A Bytecode Alliance project
Guide | Contributing | Website | Chat
Installation
The Wasmtime CLI can be installed on Linux and macOS with a small install script:
curl https://wasmtime.dev/install.sh -sSf | bash
Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.
Example
If you've got the Rust compiler installed then you can take some Rust source code:
fn main() {
println!("Hello, world!");
}
and compile/run it with:
$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!
Features
-
Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code either at runtime or ahead-of-time. Wasmtime's runtime is also optimized for cases such as efficient instantiation, low-overhead transitions between the embedder and wasm, and scalability of concurrent instances.
-
Secure. Wasmtime's development is strongly focused on the correctness of its implementation with 24/7 fuzzing donated by Google's OSS Fuzz, leveraging Rust's API and runtime safety guarantees, careful design of features and APIs through an RFC process, a security policy in place for when things go wrong, and a release policy for patching older versions as well. We follow best practices for defense-in-depth and known protections and mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic researchers to formally verify critical parts of Wasmtime and Cranelift.
-
Configurable. Wastime supports a rich set of APIs and build time configuration to provide many options such as further means of restricting WebAssembly beyond its basic guarantees such as its CPU and Memory consumption. Wasmtime also runs in tiny environments all the way up to massive servers with many concurrent instances.
-
WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.
-
Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.
Language Support
You can use Wasmtime from a variety of different languages through embeddings of the implementation:
- Rust - the
wasmtimecrate - C - the
wasm.h,wasi.h, andwasmtime.hheaders or usewasmtimeConan package - C++ - the
wasmtime-cpprepository or usewasmtime-cppConan package - Python - the
wasmtimePyPI package - .NET - the
WasmtimeNuGet package - Go - the
wasmtime-gorepository
Documentation
📚 Read the Wasmtime guide here! 📚
The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!
It's Wasmtime.