0ac1d0dd942fafb47b165f7ea63361d036905ce1
This trait is used to provide the environment necessary to translate a single WebAssembly function without having other global data structures for the WebAssembly module. The WasmRuntime trait extends the FuncEnvironment trait for those uses that want to parse a whole WebAssembly module. - Change the handling of WebAssembly globals to use the FuncEnvironment trait as well as the new GlobalVar infrastructure in Cretonne. The runtime is not consulted on the translation of each get_global/get_global instruction. Instead it gets to create the GlobalVar declaration in the function preamble the first time the global is used. - Change the handling of heap load/store instructions to use the new Heap infrastructure in Cretonne. The runtime is called to create the Heap declaration in the preamble. It is not involved in individual load/store instructions.
=======================
Cretonne Code Generator
=======================
Cretonne is a low-level retargetable code generator. It translates a
target-independent intermediate language into executable machine code.
*This is a work in progress that is not yet functional.*
.. image:: https://readthedocs.org/projects/cretonne/badge/?version=latest
:target: https://cretonne.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://travis-ci.org/stoklund/cretonne.svg?branch=master
:target: https://travis-ci.org/stoklund/cretonne
:alt: Build Status
Cretonne is designed to be a code generator for WebAssembly with these design
goals:
No undefined behavior
Cretonne does not have a `nasal demons clause <http://www.catb.org/jargon/html/N/nasal-demons.html>`_, and it won't generate code
with unexpected behavior if invariants are broken.
Portable semantics
As far as possible, Cretonne's input language has well-defined semantics
that are the same on all target architectures. The semantics are usually
the same as WebAssembly's.
Fast sandbox verification
Cretonne's input language has a safe subset for sandboxed code. No advanced
analysis is required to verify memory safety as long as only the safe
instructions are used. The safe instruction set is expressive enough to
implement WebAssembly.
Scalable performance
Cretonne can be configured to generate code as quickly as possible, or it
can generate very good code at the cost of slower compile times.
Predictable performance
When optimizing, Cretonne focuses on adapting the target-independent IL to
the quirks of the target architecture. There are no advanced optimizations
that sometimes work, sometimes fail.
Building Cretonne
-----------------
Cretonne is using the Cargo package manager format. First, ensure you have
installed a current stable rust (stable, beta, and nightly should all work, but
only stable and beta are tested consistently). Then, change the working
directory to your clone of cretonne and run::
cargo build
This will create a *target/debug* directory where you can find the generated
binary.
To build the optimized binary for release::
cargo build --release
You can then run tests with::
./test-all.sh
Building the documentation
--------------------------
To build the Cretonne documentation, you need the `Sphinx documentation
generator <http://www.sphinx-doc.org/>`_::
$ pip install sphinx sphinx-autobuild sphinx_rtd_theme
$ cd cretonne/docs
$ make html
$ open _build/html/index.html
We don't support Sphinx versions before 1.4 since the format of index tuples
has changed.
Description
Languages
Rust
77.8%
WebAssembly
20.6%
C
1.3%