Chris Fallin 0824abbae4 Add a basic alias analysis with redundant-load elim and store-to-load fowarding opts. (#4163)
This PR adds a basic *alias analysis*, and optimizations that use it.
This is a "mid-end optimization": it operates on CLIF, the
machine-independent IR, before lowering occurs.

The alias analysis (or maybe more properly, a sort of memory-value
analysis) determines when it can prove a particular memory
location is equal to a given SSA value, and when it can, it replaces any
loads of that location.

This subsumes two common optimizations:

* Redundant load elimination: when the same memory address is loaded two
  times, and it can be proven that no intervening operations will write
  to that memory, then the second load is *redundant* and its result
  must be the same as the first. We can use the first load's result and
  remove the second load.

* Store-to-load forwarding: when a load can be proven to access exactly
  the memory written by a preceding store, we can replace the load's
  result with the store's data operand, and remove the load.

Both of these optimizations rely on a "last store" analysis that is a
sort of coloring mechanism, split across disjoint categories of abstract
state. The basic idea is that every memory-accessing operation is put
into one of N disjoint categories; it is disallowed for memory to ever
be accessed by an op in one category and later accessed by an op in
another category. (The frontend must ensure this.)

Then, given this, we scan the code and determine, for each
memory-accessing op, when a single prior instruction is a store to the
same category. This "colors" the instruction: it is, in a sense, a
static name for that version of memory.

This analysis provides an important invariant: if two operations access
memory with the same last-store, then *no other store can alias* in the
time between that last store and these operations. This must-not-alias
property, together with a check that the accessed address is *exactly
the same* (same SSA value and offset), and other attributes of the
access (type, extension mode) are the same, let us prove that the
results are the same.

Given last-store info, we scan the instructions and build a table from
"memory location" key (last store, address, offset, type, extension) to
known SSA value stored in that location. A store inserts a new mapping.
A load may also insert a new mapping, if we didn't already have one.
Then when a load occurs and an entry already exists for its "location",
we can reuse the value. This will be either RLE or St-to-Ld depending on
where the value came from.

Note that this *does* work across basic blocks: the last-store analysis
is a full iterative dataflow pass, and we are careful to check dominance
of a previously-defined value before aliasing to it at a potentially
redundant load. So we will do the right thing if we only have a
"partially redundant" load (loaded already but only in one predecessor
block), but we will also correctly reuse a value if there is a store or
load above a loop and a redundant load of that value within the loop, as
long as no potentially-aliasing stores happen within the loop.
2022-05-20 13:19:32 -07:00
2020-02-28 09:16:05 -08:00

wasmtime

A standalone runtime for WebAssembly

A Bytecode Alliance project

build status zulip chat supported rustc stable Documentation Status

Guide | Contributing | Website | Chat

Installation

The Wasmtime CLI can be installed on Linux and macOS with a small install script:

curl https://wasmtime.dev/install.sh -sSf | bash

Windows or otherwise interested users can download installers and binaries directly from the GitHub Releases page.

Example

If you've got the Rust compiler installed then you can take some Rust source code:

fn main() {
    println!("Hello, world!");
}

and compile/run it with:

$ rustup target add wasm32-wasi
$ rustc hello.rs --target wasm32-wasi
$ wasmtime hello.wasm
Hello, world!

Features

  • Lightweight. Wasmtime is a standalone runtime for WebAssembly that scales with your needs. It fits on tiny chips as well as makes use of huge servers. Wasmtime can be embedded into almost any application too.

  • Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code at runtime.

  • Configurable. Whether you need to precompile your wasm ahead of time, or interpret it at runtime, Wasmtime has you covered for all your wasm-executing needs.

  • WASI. Wasmtime supports a rich set of APIs for interacting with the host environment through the WASI standard.

  • Standards Compliant. Wasmtime passes the official WebAssembly test suite, implements the official C API of wasm, and implements future proposals to WebAssembly as well. Wasmtime developers are intimately engaged with the WebAssembly standards process all along the way too.

Language Support

You can use Wasmtime from a variety of different languages through embeddings of the implementation:

Documentation

📚 Read the Wasmtime guide here! 📚

The wasmtime guide is the best starting point to learn about what Wasmtime can do for you or help answer your questions about Wasmtime. If you're curious in contributing to Wasmtime, it can also help you do that!


It's Wasmtime.

Description
No description provided
Readme 125 MiB
Languages
Rust 77.8%
WebAssembly 20.6%
C 1.3%