Commit Graph

153 Commits

Author SHA1 Message Date
Alex Crichton
0313e30d76 Remove dependency on TargetIsa from Wasmtime crates (#3178)
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.

This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:

* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
  server as an abstraction used to create compilers and configure them
  in a uniform fashion. The `wasmtime::Config` type now uses this
  instead of cranelift-specific settings. The `wasmtime-jit` crate
  exports the ability to create a compiler builder from a
  `CompilationStrategy`, which only works for Cranelift right now. In a
  cranelift-less build of Wasmtime this is expected to return a trait
  object that fails all requests to compile.

* The `Compiler` trait in the `wasmtime_environ` crate has been souped
  up with a number of methods that Wasmtime and other crates needed.

* The `wasmtime-debug` crate is now moved entirely behind the
  `wasmtime-cranelift` crate.

* The `wasmtime-cranelift` crate is now only depended on by the
  `wasmtime-jit` crate.

* Wasm types in `cranelift-wasm` no longer contain their IR type,
  instead they only contain the `WasmType`. This is required to get
  everything to align correctly but will also be required in a future
  refactoring where the types used by `cranelift-wasm` will be extracted
  to a separate crate.

* I moved around a fair bit of code in `wasmtime-cranelift`.

* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
  `wasmtime-jit`.
2021-08-16 09:55:39 -05:00
Alex Crichton
e68aa99588 Implement the memory64 proposal in Wasmtime (#3153)
* Implement the memory64 proposal in Wasmtime

This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.

A number of internal and public interfaces are changing as a result of
this commit, for example:

* Acessors on `wasmtime::Memory` that work with pages now all return
  `u64` unconditionally rather than `u32`. This makes it possible to
  accommodate 64-bit memories with this API, but we may also want to
  consider `usize` here at some point since the host can't grow past
  `usize`-limited pages anyway.

* The `wasmtime::Limits` structure is removed in favor of
  minimum/maximum methods on table/memory types.

* Many libcall intrinsics called by jit code now unconditionally take
  `u64` arguments instead of `u32`. Return values are `usize`, however,
  since the return value, if successful, is always bounded by host
  memory while arguments can come from any guest.

* The `heap_addr` clif instruction now takes a 64-bit offset argument
  instead of a 32-bit one. It turns out that the legalization of
  `heap_addr` already worked with 64-bit offsets, so this change was
  fairly trivial to make.

* The runtime implementation of mmap-based linear memories has changed
  to largely work in `usize` quantities in its API and in bytes instead
  of pages. This simplifies various aspects and reflects that
  mmap-memories are always bound by `usize` since that's what the host
  is using to address things, and additionally most calculations care
  about bytes rather than pages except for the very edge where we're
  going to/from wasm.

Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.

In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:

* All memory accesses are bounds-checked. I'm not sure how aggressively
  Cranelift tries to optimize out bounds checks, but I suspect not a ton
  since we haven't stressed this much historically.

* Heaps are always precisely sized. This means that every call to
  `memory.grow` will incur a `memcpy` of memory from the old heap to the
  new. We probably want to at least look into `mremap` on Linux and
  otherwise try to implement schemes where dynamic heaps have some
  reserved pages to grow into to help amortize the cost of
  `memory.grow`.

The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.

[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md

* Fix some tests

* More test fixes

* Fix wasmtime tests

* Fix doctests

* Revert to 32-bit immediate offsets in `heap_addr`

This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.

* Disable memory64 for spectest fuzzing

* Fix wrong offset being added to heap addr

* More comments!

* Clarify bytes/pages
2021-08-12 09:40:20 -05:00
Sam Parker
3bc2f0c701 Enable simd_X_extadd_pairwise_X for AArch64
Lower to [u|s]addlp for AArch64.

Copyright (c) 2021, Arm Limited.
2021-08-03 10:25:09 +01:00
Johnnie Birch
e519fca61c Refactor and turn on lowering for extend-add-pairwise 2021-07-31 10:52:39 -07:00
Johnnie Birch
e373ddfe1b Add extend-add-pairwise instructions x64 2021-07-30 15:06:58 -07:00
Johnnie Birch
4f601edc36 Add x64 support for remaining int-to-int extend simd instructions
Adds remaming support for int to int extend simd instructions.
Specifically adds support for remaining I32x4->I64x2 instructions
2021-07-28 23:33:42 -07:00
Johnnie Birch
500f530322 Add support for i32x4_trunc_sat_f64x2_s for x64 2021-07-26 22:24:30 -07:00
Johnnie Birch
5deda27977 Add support for Saturating Rounding Q-format Multiplication for x64 2021-07-26 20:32:46 -07:00
Andrew Brown
961c9ea909 test: check unaligned load-coalescing with SIMD operations 2021-07-26 13:39:16 -07:00
Anton Kirilov
6c3d7092b9 Enable the simd_conversions test for AArch64
Copyright (c) 2021, Arm Limited.
2021-07-16 22:04:45 +01:00
Johnnie Birch
6fbe0b72bd Add simd_extmul_* support for x64 2021-07-15 01:07:52 -07:00
Johnnie Birch
2d676d838f Implements f64x2.convert_low_i32x4_u for x64 2021-07-09 10:39:05 -07:00
Anton Kirilov
330f02aa09 Enable the simd_i32x4_trunc_sat_f64x2 test for AArch64
Also, reorganize the AArch64-specific VCode instructions for unary
narrowing and widening vector operations, so that they are more
straightforward to use.

Copyright (c) 2021, Arm Limited.
2021-06-30 12:17:53 +01:00
Anton Kirilov
98f1ac789e Enable the simd_i16x8_q15mulr_sat_s test on AArch64
Copyright (c) 2021, Arm Limited.
2021-06-28 12:24:31 +01:00
Anton Kirilov
cb93726250 Enable more tests on AArch64 (#2994)
Copyright (c) 2021, Arm Limited.
2021-06-21 12:26:44 -05:00
Anton Kirilov
b09b123a9e Enable the simd_i8x16_arith2 test for AArch64
Copyright (c) 2021, Arm Limited.
2021-06-18 14:09:52 +01:00
Anton Kirilov
5e8a8fe5a0 Enable the simd_int_to_int_extend test for AArch64
Copyright (c) 2021, Arm Limited.
2021-06-04 16:10:02 +01:00
Alex Crichton
7a1b7cdf92 Implement RFC 11: Redesigning Wasmtime's APIs (#2897)
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
2021-06-03 09:10:53 -05:00
Johnnie Birch
9a5c9607e1 Vpopcnt for x64 2021-05-21 19:23:26 -07:00
Ulrich Weigand
89b5fc776d Support IBM z/Architecture
This adds support for the IBM z/Architecture (s390x-ibm-linux).

The status of the s390x backend in its current form is:
- Wasmtime is fully functional and passes all tests on s390x.
- All back-end features supported, with the exception of SIMD.
- There is still a lot of potential for performance improvements.
- Currently the only supported processor type is z15.
2021-05-10 16:01:16 +02:00
Anton Kirilov
480670e17f Enable the simd_boolean test for AArch64
Also, enable the simd_i64x2_arith2 test because it doesn't need
any code changes.

Copyright (c) 2021, Arm Limited.
2021-04-27 20:19:51 +01:00
Chris Fallin
cb48ea406e Switch default to new x86_64 backend.
This PR switches the default backend on x86, for both the
`cranelift-codegen` crate and for Wasmtime, to the new
(`MachInst`-style, `VCode`-based) backend that has been under
development and testing for some time now.

The old backend is still available by default in builds with the
`old-x86-backend` feature, or by requesting `BackendVariant::Legacy`
from the appropriate APIs.

As part of that switch, it adds some more runtime-configurable plumbing
to the testing infrastructure so that tests can be run using the
appropriate backend. `clif-util test` is now capable of parsing a
backend selector option from filetests and instantiating the correct
backend.

CI has been updated so that the old x86 backend continues to run its
tests, just as we used to run the new x64 backend separately.

At some point, we will remove the old x86 backend entirely, once we are
satisfied that the new backend has not caused any unforeseen issues and
we do not need to revert.
2021-04-02 11:35:53 -07:00
Peter Huene
f8cc824396 Merge pull request #2518 from peterhuene/add-allocator
Implement the pooling instance allocator.
2021-03-08 12:20:31 -08:00
Andrew Brown
352e51f68d [simd] Implement load*_lane and store*_lane
The Wasm SIMD specification has added new instructions that allow inserting to the lane of a vector from a memory location, and conversely, extracting from a lane of a vector to a memory location. The simplest implementation lowers these instructions, `load[8|16|32|64]_lane` and `store[8|16|32|64]_lane`, to a sequence of either `load + insertlane` or `extractlane + store` (in CLIF). With the new backend's pattern matching, we expect these CLIF sequences to compile as a single machine instruction (at least in x64).
2021-03-08 09:49:44 -08:00
Peter Huene
57dfe99aa5 Run wast tests with both instance allocators.
This commit adds a "pooling" variant to the wast tests that uses the pooling
instance allocation strategy.

This should help with the test coverage of the pooling instance allocator.
2021-03-05 22:28:51 -08:00
Andrew Brown
cfbe0ef96a [x64] Re-enable simd_lane.wast spec tests 2021-03-02 13:57:55 -08:00
Andrew Brown
4a809fc8fd [x64] Add i64x2.all_true and i64x2.bitmask
These instructions already had CLIF implementations but were only recently approved in the Wasm SIMD working group.
2021-03-02 13:57:55 -08:00
Andrew Brown
508f8fa5a9 [x64] Add i64x2.abs
This instruction has a single instruction lowering in AVX512F/VL and a three instruction lowering in AVX but neither is currently supported in the x64 backend. To implement this, we instead subtract the vector from 0 and use a blending instruction to pick the lanes containing the absolute value.
2021-03-02 12:30:02 -08:00
Andrew Brown
3c57c1b2bc Enable simd_i64x2_cmp.wast for aarch64
As mentioned in https://github.com/bytecodealliance/wasmtime/pull/2697#discussion_r585168434, this commit enables the simd_i64x2_cmp.wast spec test on aarch64; I had mistakenly classified the test as only working on x64.
2021-03-02 10:05:43 -08:00
Andrew Brown
d730f18a78 [x64] Add the new i64x2 comparisons 2021-03-01 17:52:34 -08:00
Andrew Brown
44e76fe9c0 Update spec tests (#2690)
* Update wasm-tools crates

* Update Wasm SIMD spec tests

* Invert 'experimental_x64_should_panic' logic

By doing this, it is easier to see which spec tests currently panic. The new tests correspond to recently-added instructions.

* Fix: ignore new spec tests for all backends
2021-03-01 16:39:20 -06:00
Alex Crichton
4a351ab7fe Update a number of dependencies (#2594)
This commit goes through the dependencies that wasmtime has and updates
versions where possible. This notably brings in a wasmparser/wast update
which has some simd spec changes with new instructions. Otherwise most
of these are just routine updates.
2021-01-21 15:49:13 -06:00
Johnnie Birch
cde07b9a79 Re-enable spec tests that were disabled for #2432 #2470. Enable new tests
Re-enables spec tests that were turned off for #2432 and #2470 while
also enabling tests that now work due to patch pushes in the interim.
Currently all SIMD spec tests past. Testing to assure this is ok to
enable hasn't been super intense so we should monitor but there
was an attempt of doing 1000 runs 3 different times to try and reproduce
the issue and it did not occur. In the past would have occurred several
times with that many runs.
2021-01-13 19:44:00 -08:00
Yury Delendik
3580205f12 [Cranelift][Atomics] Add address folding for atomic notify/wait. (#2556)
* fold address in wasm wait and notify ops

* add atomics addr folding tests
2021-01-08 11:55:21 -06:00
Andrew Brown
2c765c18c2 Update spec tests 2020-12-07 10:59:55 -08:00
Chris Fallin
d2721064df Disable all x64 SIMD tests, as some seem to be nondeterministic.
We are seeing some repeated but nondeterministic failures of x64 SIMD
tests, as tracked in #2470. In order to err on the side of not
inadvertently breaking/blocking CI for others, we will disable all SIMD
tests for now while we investigate.
2020-12-03 10:01:01 -08:00
Johnnie Birch
a548516f97 Enable SIMD spec tests for f32x4_rounding and f64x4_rounding.
Also address some review comments pointing out minor issues.
2020-12-02 13:44:51 -08:00
Alex Crichton
88a8a8993a Instantiate nested modules for module linking (#2447)
This commit implements the interpretation necessary of the instance
section of the module linking proposal. Instantiating a module which
itself has nested instantiated instances will now instantiate the nested
instances properly. This isn't all that useful without the ability to
alias exports off the result, but we can at least observe the side
effects of instantiation through the `start` function.

cc #2094
2020-12-01 14:01:31 -06:00
Johnnie Birch
ff8a4e4f9b Enable simd_conversions spec test 2020-11-23 13:00:13 -08:00
Andrew Brown
ad61eb4eb9 [machinst x64]: enable more SIMD spec tests 2020-11-12 14:21:45 -08:00
Andrew Brown
6c6d958f38 [machinst x64]: implement packed pmin/pmax 2020-10-28 16:03:53 -07:00
Andrew Brown
6725b6b129 [machinst x64]: implement bitmask 2020-10-28 15:16:36 -07:00
Julian Seward
c15d9bd61b CL/aarch64: implement the wasm SIMD pseudo-max/min and FP-rounding instructions
This patch implements, for aarch64, the following wasm SIMD extensions

  Floating-point rounding instructions
  https://github.com/WebAssembly/simd/pull/232

  Pseudo-Minimum and Pseudo-Maximum instructions
  https://github.com/WebAssembly/simd/pull/122

The changes are straightforward:

* `build.rs`: the relevant tests have been enabled

* `cranelift/codegen/meta/src/shared/instructions.rs`: new CLIF instructions
  `fmin_pseudo` and `fmax_pseudo`.  The wasm rounding instructions do not need
  any new CLIF instructions.

* `cranelift/wasm/src/code_translator.rs`: translation into CLIF; this is
  pretty much the same as any other unary or binary vector instruction (for
  the rounding and the pmin/max respectively)

* `cranelift/codegen/src/isa/aarch64/lower_inst.rs`:
  - `fmin_pseudo` and `fmax_pseudo` are converted into a two instruction
    sequence, `fcmpgt` followed by `bsl`
  - the CLIF rounding instructions are converted to a suitable vector
    `frint{n,z,p,m}` instruction.

* `cranelift/codegen/src/isa/aarch64/inst/mod.rs`: minor extension of `pub
  enum VecMisc2` to handle the rounding operations.  And corresponding `emit`
  cases.
2020-10-26 10:37:07 +01:00
Julian Seward
2702942050 CL/aarch64 back end: implement the wasm SIMD bitmask instructions
The `bitmask.{8x16,16x8,32x4}` instructions do not map neatly to any single
AArch64 SIMD instruction, and instead need a sequence of around ten
instructions.  Because of this, this patch is somewhat longer and more complex
than it would be for (eg) x64.

Main changes are:

* the relevant testsuite test (`simd_boolean.wast`) has been enabled on aarch64.

* at the CLIF level, add a new instruction `vhigh_bits`, into which these wasm
  instructions are to be translated.

* in the wasm->CLIF translation (code_translator.rs), translate into
  `vhigh_bits`.  This is straightforward.

* in the CLIF->AArch64 translation (lower_inst.rs), translate `vhigh_bits`
  into equivalent sequences of AArch64 instructions.  There is a different
  sequence for each of the `{8x16, 16x8, 32x4}` variants.

All other changes are AArch64-specific, and add instruction definitions needed
by the previous step:

* Add two new families of AArch64 instructions: `VecShiftImm` (vector shift by
  immediate) and `VecExtract` (effectively a double-length vector shift)

* To the existing AArch64 family `VecRRR`, add a `zip1` variant.  To the
  `VecLanesOp` family add an `addv` variant.

* Add supporting code for the above changes to AArch64 instructions:
  - getting the register uses (`aarch64_get_regs`)
  - mapping the registers (`aarch64_map_regs`)
  - printing instructions
  - emitting instructions (`impl MachInstEmit for Inst`).  The handling of
    `VecShiftImm` is a bit complex.
  - emission tests for new instructions and variants.
2020-10-23 05:26:25 +02:00
Alex Crichton
e659d5cecd Add initial support for the multi-memory proposal (#2263)
This commit adds initial (gated) support for the multi-memory wasm
proposal. This was actually quite easy since almost all of wasmtime
already expected multi-memory to be implemented one day. The only real
substantive change is the `memory.copy` intrinsic changes, which now
accounts for the source/destination memories possibly being different.
2020-10-13 19:13:52 -05:00
Andrew Brown
d5d84e2ec3 [machinst x64]: enable simd_bitwise.wast 2020-10-09 10:04:50 -07:00
Andrew Brown
c8cce5d2d7 [machinst x64]: enable packed saturated arithmetic 2020-10-08 08:46:20 -07:00
Alex Crichton
9e87e45745 Update wasmparser, wast, and spec test suite (#2264)
This brings in a number of SIMD opcode renames, various other test suite
updates, as well as some new proposed SIMD opcodes too.
2020-10-05 13:51:16 -05:00
Johnnie Birch
7b4d173b90 Adds packed floating point min/max for X64 for the new backend
Allows for simd_f32x4 and simd_f64x2 spec tests
2020-10-02 16:20:10 -07:00
Andrew Brown
a82d1604cb [machinst x64]: enable lane spec tests 2020-10-02 08:29:31 -07:00