This commit makes the following changes to unwind information generation in
Cranelift:
* Remove frame layout change implementation in favor of processing the prologue
and epilogue instructions when unwind information is requested. This also
means this work is no longer performed for Windows, which didn't utilize it.
It also helps simplify the prologue and epilogue generation code.
* Remove the unwind sink implementation that required each unwind information
to be represented in final form. For FDEs, this meant writing a
complete frame table per function, which wastes 20 bytes or so for each
function with duplicate CIEs. This also enables Cranelift users to collect the
unwind information and write it as a single frame table.
* For System V calling convention, the unwind information is no longer stored
in code memory (it's only a requirement for Windows ABI to do so). This allows
for more compact code memory for modules with a lot of functions.
* Deletes some duplicate code relating to frame table generation. Users can
now simply use gimli to create a frame table from each function's unwind
information.
Fixes#1181.
* Enable jitdump profiling support by default
This the result of some of the investigation I was doing for #1017. I've
done a number of refactorings here which culminated in a number of
changes that all amount to what I think should result in jitdump support being
enabled by default:
* Pass in a list of finished functions instead of just a range to
ensure that we're emitting jit dump data for a specific module rather
than a whole `CodeMemory` which may have other modules.
* Define `ProfilingStrategy` in the `wasmtime` crate to have everything
locally-defined
* Add support to the C API to enable profiling
* Documentation added for profiling with jitdump to the book
* Split out supported/unsupported files in `jitdump.rs` to avoid having
lots of `#[cfg]`.
* Make dependencies optional that are only used for `jitdump`.
* Move initialization up-front to `JitDumpAgent::new()` instead of
deferring it to the first module.
* Pass around `Arc<dyn ProfilingAgent>` instead of
`Option<Arc<Mutex<Box<dyn ProfilingAgent>>>>`
The `jitdump` Cargo feature is now enabled by default which means that
our published binaries, C API artifacts, and crates will support
profiling at runtime by default. The support I don't think is fully
fleshed out and working but I think it's probably in a good enough spot
we can get users playing around with it!
* Refactor wasmtime_runtime::Export
Instead of an enumeration with variants that have data fields have an
enumeration where each variant has a struct, and each struct has the
data fields. This allows us to store the structs in the `wasmtime` API
and avoid lots of `panic!` calls and various extraneous matches.
* Pre-generate trampoline functions
The `wasmtime` crate supports calling arbitrary function signatures in
wasm code, and to do this it generates "trampoline functions" which have
a known ABI that then internally convert to a particular signature's ABI
and call it. These trampoline functions are currently generated
on-the-fly and are cached in the global `Store` structure. This,
however, is suboptimal for a few reasons:
* Due to how code memory is managed each trampoline resides in its own
64kb allocation of memory. This means if you have N trampolines you're
using N * 64kb of memory, which is quite a lot of overhead!
* Trampolines are never free'd, even if the referencing module goes
away. This is similar to #925.
* Trampolines are a source of shared state which prevents `Store` from
being easily thread safe.
This commit refactors how trampolines are managed inside of the
`wasmtime` crate and jit/runtime internals. All trampolines are now
allocated in the same pass of `CodeMemory` that the main module is
allocated into. A trampoline is generated per-signature in a module as
well, instead of per-function. This cache of trampolines is stored
directly inside of an `Instance`. Trampolines are stored based on
`VMSharedSignatureIndex` so they can be looked up from the internals of
the `ExportFunction` value.
The `Func` API has been updated with various bits and pieces to ensure
the right trampolines are registered in the right places. Overall this
should ensure that all trampolines necessary are generated up-front
rather than lazily. This allows us to remove the trampoline cache from
the `Compiler` type, and move one step closer to making `Compiler`
threadsafe for usage across multiple threads.
Note that as one small caveat the `Func::wrap*` family of functions
don't need to generate a trampoline at runtime, they actually generate
the trampoline at compile time which gets passed in.
Also in addition to shuffling a lot of code around this fixes one minor
bug found in `code_memory.rs`, where `self.position` was loaded before
allocation, but the allocation may push a new chunk which would cause
`self.position` to be zero instead.
* Pass the `SignatureRegistry` as an argument to where it's needed.
This avoids the need for storing it in an `Arc`.
* Ignore tramoplines for functions with lots of arguments
Co-authored-by: Dan Gohman <sunfish@mozilla.com>
Patch adds support for the perf jitdump file specification.
With this patch it should be possible to see profile data for code
generated and maped at runtime. Specifically the patch adds support
for the JIT_CODE_LOAD and the JIT_DEBUG_INFO record as described in
the specification. Dumping jitfiles is enabled with the --jitdump
flag. When the -g flag is also used there is an attempt to dump file
and line number information where this option would be most useful
when the WASM file already includes DWARF debug information.
The generation of the jitdump files has been tested on only a few wasm
files. This patch is expected to be useful/serviceable where currently
there is no means for jit profiling, but future patches may benefit
line mapping and add support for additional jitdump record types.
Usage Example:
Record
sudo perf record -k 1 -e instructions:u target/debug/wasmtime -g
--jitdump test.wasm
Combine
sudo perf inject -v -j -i perf.data -o perf.jit.data
Report
sudo perf report -i perf.jit.data -F+period,srcline
* Update `CodeMemory` to be `Send + Sync`
This commit updates the `CodeMemory` type in wasmtime to be both `Send`
and `Sync` by updating the implementation of `Mmap` to not store raw
pointers. This avoids the need for an `unsafe impl` and leaves the
unsafety as it is currently.
* Run rustfmt
* Rename `offset` to `ptr`
* Remove the need for `HostRef<Module>`
This commit continues previous work and also #708 by removing the need
to use `HostRef<Module>` in the API of the `wasmtime` crate. The API
changes performed here are:
* The `Module` type is now itself internally reference counted.
* The `Module::store` function now returns the `Store` that was used to
create a `Module`
* Documentation for `Module` and its methods have been expanded.
* Fix compliation of test programs harness
* Fix the python extension
* Update `CodeMemory` to be `Send + Sync`
This commit updates the `CodeMemory` type in wasmtime to be both `Send`
and `Sync` by updating the implementation of `Mmap` to not store raw
pointers. This avoids the need for an `unsafe impl` and leaves the
unsafety as it is currently.
* Fix a typo
* Migrate back to `std::` stylistically
This commit moves away from idioms such as `alloc::` and `core::` as
imports of standard data structures and types. Instead it migrates all
crates to uniformly use `std::` for importing standard data structures
and types. This also removes the `std` and `core` features from all
crates to and removes any conditional checking for `feature = "std"`
All of this support was previously added in #407 in an effort to make
wasmtime/cranelift "`no_std` compatible". Unfortunately though this
change comes at a cost:
* The usage of `alloc` and `core` isn't idiomatic. Especially trying to
dual between types like `HashMap` from `std` as well as from
`hashbrown` causes imports to be surprising in some cases.
* Unfortunately there was no CI check that crates were `no_std`, so none
of them actually were. Many crates still imported from `std` or
depended on crates that used `std`.
It's important to note, however, that **this does not mean that wasmtime
will not run in embedded environments**. The style of the code today and
idioms aren't ready in Rust to support this degree of multiplexing and
makes it somewhat difficult to keep up with the style of `wasmtime`.
Instead it's intended that embedded runtime support will be added as
necessary. Currently only `std` is necessary to build `wasmtime`, and
platforms that natively need to execute `wasmtime` will need to use a
Rust target that supports `std`. Note though that not all of `std` needs
to be supported, but instead much of it could be configured off to
return errors, and `wasmtime` would be configured to gracefully handle
errors.
The goal of this PR is to move `wasmtime` back to idiomatic usage of
features/`std`/imports/etc and help development in the short-term.
Long-term when platform concerns arise (if any) they can be addressed by
moving back to `no_std` crates (but fixing the issues mentioned above)
or ensuring that the target in Rust has `std` available.
* Start filling out platform support doc