Adds support for transforming integer division and remainder by constants
into sequences that do not involve division instructions.
* div/rem by constant powers of two are turned into right shifts, plus some
fixups for the signed cases.
* div/rem by constant non-powers of two are turned into double length
multiplies by a magic constant, plus some fixups involving shifts,
addition and subtraction, that depends on the constant, the word size and
the signedness involved.
* The following cases are transformed: div and rem, signed or unsigned, 32
or 64 bit. The only un-transformed cases are: unsigned div and rem by
zero, signed div and rem by zero or -1.
* This is all incorporated within a new transformation pass, "preopt", in
lib/cretonne/src/preopt.rs.
* In preopt.rs, fn do_preopt() is the main driver. It is designed to be
extensible to transformations of other kinds of instructions. Currently
it merely uses a helper to identify div/rem transformation candidates and
another helper to perform the transformation.
* In preopt.rs, fn get_div_info() pattern matches to find candidates, both
cases where the second arg is an immediate, and cases where the second
arg is an identifier bound to an immediate at its definition point.
* In preopt.rs, fn do_divrem_transformation() does the heavy lifting of the
transformation proper. It in turn uses magic{S,U}{32,64} to calculate the
magic numbers required for the transformations.
* There are many test cases for the transformation proper:
filetests/preopt/div_by_const_non_power_of_2.cton
filetests/preopt/div_by_const_power_of_2.cton
filetests/preopt/rem_by_const_non_power_of_2.cton
filetests/preopt/rem_by_const_power_of_2.cton
filetests/preopt/div_by_const_indirect.cton
preopt.rs also contains a set of tests for magic number generation.
* The main (non-power-of-2) transformation requires instructions that return
the high word of a double-length multiply. For this, instructions umulhi
and smulhi have been added to the core instruction set. These will map
directly to single instructions on most non-intel targets.
* intel does not have an instruction exactly like that. For intel,
instructions x86_umulx and x86_smulx have been added. These map to real
instructions and return both result words. The intel legaliser will
rewrite {s,u}mulhi into x86_{s,u}mulx uses that throw away the lower half
word. Tests:
filetests/isa/intel/legalize-mulhi.cton (new file)
filetests/isa/intel/binary64.cton (added x86_{s,u}mulx encoding tests)
StackSlotKind::OutgoingArg stack slots have an offset that is relative
to our own stack pointer, while all other stack slot kinds have offsets
that are relative to the caller's stack pointer.
Make sure we generate the right sp-relative offsets for outgoing
arguments too.
This makes it easier to debug testcases:
- the entity numbers in a .cton file match the entity numbers used
within Cretonne.
- serializing and deserializing doesn't cause indices to change.
One disadvantage is that if a .cton file uses sparse entity numbers,
deserializing to the in-memory form doesn't compact it. However, the
text format is not intended to be performance-critical, so this isn't
expected to be a big burden.
The instruction set has variants with 8-bit and 32-bit signed immediate
operands.
Add a TODO to use a TEST instruction for the special case ifcmp_imm x, 0.
* Use imm64 rather than offset32
* Add predicate to enforce signed 32-bit limit to imm
* Remove AdjustSpImm format
* Add encoding tests for adjust_sp_imm
* Adjust use of adjust_sp_imm in Intel prologue_epilogue to match
To begin with, these are catch-all encodings with a SIB byte and a
32-bit displacement, so they can access any stack slot via both the
stack pointer and the frame pointer.
In the future, we will add encodings for 8-bit displacements as well as
EBP-relative references without a SIB byte.
A CallConv enum on every function signature makes it possible to
generate calls to functions with different calling conventions within
the same ISA / within a single function.
The calling conventions also serve as a way of customizing Cretonne's
behavior when embedded inside a VM. As an example, the SpiderWASM
calling convention is used to compile WebAssembly functions that run
inside the SpiderMonkey virtual machine.
All function signatures must have a calling convention at the end, so
this changes the textual IL syntax.
Before:
sig1 = signature(i32, f64) -> f64
After
sig1 = (i32, f64) -> f64 native
sig2 = (i32) spiderwasm
When printing functions, the signature goes after the return types:
function %r1() -> i32, f32 spiderwasm {
ebb1:
...
}
In the parser, this calling convention is optional and defaults to
"native". This is mostly to avoid updating all the existing test cases
under filetests/. When printing a function, the calling convention is
always included, including for "native" functions.
* Added Intel x86-64 encodings for 64bit loads and store instructions
* Using GPR registers instead of ABCD for istore8 with REX prefix
Fixed testing of 64bit intel encoding
* Emit REX and REX-less encodings for optional REX prefix
Value renumbering in binary64.cton
This instruction returns a `b1` value which is represented as the output
of a setCC instruction which is the low 8 bits of a GPR register. Use a
cmp+setCC macro recipe to encode this. That is not ideal, but we can't
represent CPU flags yet.
Add instructions representing Intel's division instructions which use a
numerator that is twice as wide as the denominator and produce both the
quotient and remainder.
Add encodings for the x86_[su]divmodx instructions.
Change the result type for the bit-counting instructions from a fixed i8
to the iB type variable which is the type of the input. This matches the
convention in WebAssembly, and at least Intel's instructions will set a
full register's worth of count result, even if it is always < 64.
Duplicate the Intel 'ur' encoding recipe into 'umr' and 'urm' variants
corresponding to the RM and MR encoding variants. The difference is
which register is encoded as 'reg' and which is 'r/m' in the ModR/M
byte. A 'mov' register copy uses the MR variant, a unary popcnt uses the
RM variant.
Add a TailRecipe.rex() method which creates an encoding recipe with a
REX prefix.
Define I64 encodings with REX.W for i64 operations and with/without REX
for i32 ops. Only test the with-REX encodings for now. We don't yet have
an instruction shrinking pass that can select the non-REX encodings.