This lets us avoid the cost of `cranelift_codegen::ir::Opcode` to
`peepmatic_runtime::Operator` conversion overhead, and paves the way for
allowing Peepmatic to support non-clif optimizations (e.g. vcode optimizations).
Rather than defining our own `peepmatic::Operator` type like we used to, now the
whole `peepmatic` crate is effectively generic over a `TOperator` type
parameter. For the Cranelift integration, we use `cranelift_codegen::ir::Opcode`
as the concrete type for our `TOperator` type parameter. For testing, we also
define a `TestOperator` type, so that we can test Peepmatic code without
building all of Cranelift, and we can keep them somewhat isolated from each
other.
The methods that `peepmatic::Operator` had are now translated into trait bounds
on the `TOperator` type. These traits need to be shared between all of
`peepmatic`, `peepmatic-runtime`, and `cranelift-codegen`'s Peepmatic
integration. Therefore, these new traits live in a new crate:
`peepmatic-traits`. This crate acts as a header file of sorts for shared
trait/type/macro definitions.
Additionally, the `peepmatic-runtime` crate no longer depends on the
`peepmatic-macro` procedural macro crate, which should lead to faster build
times for Cranelift when it is using pre-built peephole optimizers.
Certain operations (e.g. widening) will have operands with types like `NxM` but will return results with types like `(N*2)x(M/2)` (double the lane width, halve the number of lanes; maintain the same number of vector bits). This is equivalent to applying two `DerivedFunction`s to the type: `DerivedFunction::DoubleWidth` then `DerivedFunction::HalfVector`. Since there is no easy way to apply multiple `DerivedFunction`s (e.g. most of the logic is one-level deep, 1d5a678124/cranelift/codegen/meta/src/gen_inst.rs (L618-L621)), I added `DerivedFunction::MergeLanes` to do the necessary type conversion.
* Switch CI back to nightly channel
I think all upstream issues are now fixed so we should be good to switch
back to nightly from our previously pinned version.
* Fix doc warnings
These instructions have fast, inline JIT paths for the common cases, and only
call out to host VM functions for the slow paths. This required some changes to
`cranelift-wasm`'s `FuncEnvironment`: instead of taking a `FuncCursor` to insert
an instruction sequence within the current basic block,
`FuncEnvironment::translate_table_{get,set}` now take a `&mut FunctionBuilder`
so that they can create whole new basic blocks. This is necessary for
implementing GC read/write barriers that involve branching (e.g. checking for
null, or whether a store buffer is at capacity).
Furthermore, it required that the `load`, `load_complex`, and `store`
instructions handle loading and storing through an `r{32,64}` rather than just
`i{32,64}` addresses. This involved making `r{32,64}` types acceptable
instantiations of the `iAddr` type variable, plus a few new instruction
encodings.
Part of #929
Also add configuration to CI to fail doc generation if any links are
broken. Unfortunately we can't blanket deny all warnings in rustdoc
since some are unconditional warnings, but for now this is hopefully
good enough.
Closes#1947
When we vendor Cranelift into Firefox, we need to be able to build with
the Firefox CI setup (unless we carry patches on top of upstream).
Unfortunately, the Firefox CI currently appears to build with a slightly
older version of Rust: I can't work out which version exactly, but one
without stable support for `matches!()`.
A recent attempt to version-bump Cranelift failed with build errors at
the two locations in this patch:
https://treeherder.mozilla.org/logviewer.html#/jobs?job_id=305994046&repo=autoland&lineNumber=24829
I also see a bunch of uses of `matches!()` in Peepmatic, but those
crates are not built by Firefox, so we can leave them be for now, I
think.
These libcalls are useful for 32-bit platforms.
On x86_32 in particular, commit 4ec16fa0 added support for legalizing
64-bit shifts through SIMD operations. However, that legalization
requires SIMD to be enabled and SSE 4.1 to be supported, which is not
acceptable as a hard requirement.
This ports all of the identity, no-op, simplification, and canonicalization
related optimizations over from being hand-coded to the `peepmatic` DSL. This
does not handle the branch-to-branch optimizations or most of the
divide-by-constant optimizations.
* Remove Cranelift's OutOfBounds trap, which is no longer used.
* Change proc_exit to unwind instead of exit the host process.
This implements the semantics in https://github.com/WebAssembly/WASI/pull/235.
Fixes#783.
Fixes#993.
* Fix exit-status tests on Windows.
* Revert the wiggle changes and re-introduce the wasi-common implementations.
* Move `wasi_proc_exit` into the wasmtime-wasi crate.
* Revert the spec_testsuite change.
* Remove the old proc_exit implementations.
* Make `TrapReason` an implementation detail.
* Allow exit status 2 on Windows too.
* Fix a documentation link.
* Really fix a documentation link.
Previously, every call was lowered on AArch64 to a `call` instruction, which
takes a signed 26-bit PC-relative offset. Including the 2-bit left shift, this
gives a range of +/- 128 MB. Longer-distance offsets would cause an impossible
relocation record to be emitted (or rather, a record that a more sophisticated
linker would fix up by inserting a shim/veneer).
This commit adds a notion of "relocation distance" in the MachInst backends,
and provides this information for every call target and symbol reference. The
intent is that backends on architectures like AArch64, where there are different
offset sizes / addressing strategies to choose from, can either emit a regular
call or a load-64-bit-constant / call-indirect sequence, as necessary. This
avoids the need to implement complex linking behavior.
The MachInst driver code provides this information based on the "colocated" bit
in the CLIF symbol references, which appears to have been designed for this
purpose, or at least a similar one. Combined with the `use_colocated_libcalls`
setting, this allows client code to ensure that library calls can link to
library code at any location in the address space.
Separately, the `simplejit` example did not handle `Arm64Call`; rather than doing
so, it appears all that is necessary to get its tests to pass is to set the
`use_colocated_libcalls` flag to false, to make use of the above change. This
fixes the `libcall_function` unit-test in this crate.
Certain operations (e.g. x86_packss) will have operands with types like `NxM` but will return results with types like `(N/2)x(M*2)` (halve the lane width, double the number of lanes; maintain the same number of vector bits). This is equivalent to applying two `DerivedFunction`s to the type: `DerivedFunction::HalfWidth` then `DerivedFunction::DoubleVector`. Since there is no easy way to apply multiple `DerivedFunction`s (e.g. most of the logic is one-level deep, 1d5a678124/cranelift/codegen/meta/src/gen_inst.rs (L618-L621)), I added `DerivedFunction::SplitLanes` to do the necessary type conversion.
* Implement interrupting wasm code, reimplement stack overflow
This commit is a relatively large change for wasmtime with two main
goals:
* Primarily this enables interrupting executing wasm code with a trap,
preventing infinite loops in wasm code. Note that resumption of the
wasm code is not a goal of this commit.
* Additionally this commit reimplements how we handle stack overflow to
ensure that host functions always have a reasonable amount of stack to
run on. This fixes an issue where we might longjmp out of a host
function, skipping destructors.
Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.
A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.
When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.
Some fallout included from this change is:
* Unix signal handlers are no longer registered with `SA_ONSTACK`.
Instead they run on the native stack the thread was already using.
This is possible since stack overflow isn't handled by hitting the
guard page, but rather it's explicitly checked for in wasm now. Native
stack overflow will continue to abort the process as usual.
* Unix sigaltstack management is now no longer necessary since we don't
use it any more.
* Windows no longer has any need to reset guard pages since we no longer
try to recover from faults on guard pages.
* On all targets probestack intrinsics are disabled since we use a
different mechanism for catching stack overflow.
* The C API has been updated with interrupts handles. An example has
also been added which shows off how to interrupt a module.
Closes#139Closes#860Closes#900
* Update comment about magical interrupt value
* Store stack limit as a global value, not a closure
* Run rustfmt
* Handle review comments
* Add a comment about SA_ONSTACK
* Use `usize` for type of `INTERRUPTED`
* Parse human-readable durations
* Bring back sigaltstack handling
Allows libstd to print out stack overflow on failure still.
* Add parsing and emission of stack limit-via-preamble
* Fix new example for new apis
* Fix host segfault test in release mode
* Fix new doc example
This allows us to give names to constants in the constant pool and then use these names in the function body. The original behavior, specifiying the constant value as an instruction immediate, is still supported as a shortcut but some filetests had to change since the canonical way of printing the CLIF constants is now in the preamble.
This commit makes the following changes to unwind information generation in
Cranelift:
* Remove frame layout change implementation in favor of processing the prologue
and epilogue instructions when unwind information is requested. This also
means this work is no longer performed for Windows, which didn't utilize it.
It also helps simplify the prologue and epilogue generation code.
* Remove the unwind sink implementation that required each unwind information
to be represented in final form. For FDEs, this meant writing a
complete frame table per function, which wastes 20 bytes or so for each
function with duplicate CIEs. This also enables Cranelift users to collect the
unwind information and write it as a single frame table.
* For System V calling convention, the unwind information is no longer stored
in code memory (it's only a requirement for Windows ABI to do so). This allows
for more compact code memory for modules with a lot of functions.
* Deletes some duplicate code relating to frame table generation. Users can
now simply use gimli to create a frame table from each function's unwind
information.
Fixes#1181.
- Undo temporary changes to default features (`all-arch`) and a
signal-handler test.
- Remove `SIGTRAP` handler: no longer needed now that we've found an
"undefined opcode" option on ARM64.
- Rename pp.rs to pretty_print.rs in machinst/.
- Only use empty stack-probe on non-x86. As per a comment in
rust-lang/compiler-builtins [1], LLVM only supports stack probes on
x86 and x86-64. Thus, on any other CPU architecture, we cannot refer
to `__rust_probestack`, because it does not exist.
- Rename arm64 to aarch64.
- Use `target` directive in vcode filetests.
- Run the flags verifier, but without encinfo, when using new backends.
- Clean up warning overrides.
- Fix up use of casts: use u32::from(x) and siblings when possible,
u32::try_from(x).unwrap() when not, to avoid silent truncation.
- Take immutable `Function` borrows as input; we don't actually
mutate the input IR.
- Lots of other miscellaneous cleanups.
[1] cae3e6ea23/src/probestack.rs (L39)
This patch ties together the new backend infrastructure with the
existing Cranelift codegen APIs.
With all patches in this series up to this patch applied, the ARM64
compiler is now functional and can be used. Two uses of this
functionality -- filecheck-based tests and integration into wasmtime --
will come in subsequent patches.
- Add a `simple_legalize()` function that invokes a predetermined set of
legalizations, without depending on the details of the current
backend design. This will be used by the new backend pipeline.
- Separate out `has_side_effect()` from the DCE pass. This will be used
by the new backends' lowering code.
- Add documentation for the `Arm64Call` relocation type.
This is a rebase of [1]. In the long term, we'll want to simplify these
analysis passes. For now, this is simple and will reduce the number of
instructions processed in certain cases.
[1] https://github.com/bytecodealliance/cranelift/pull/866
* Manually rename BasicBlock to BlockPredecessor
BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.
Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.
I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.
* Manually rename SSABuilder block types to avoid conflict
SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.
* Automatically rename 'Ebb' to 'Block' in *.rs
* Automatically rename 'EBB' to 'block' in *.rs
* Automatically rename 'ebb' to 'block' in *.rs
* Automatically rename 'extended basic block' to 'basic block' in *.rs
* Automatically rename 'an basic block' to 'a basic block' in *.rs
* Manually update comment for `Block`
`Block`'s wikipedia article required an update.
* Automatically rename 'an `Block`' to 'a `Block`' in *.rs
* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs
* Automatically rename 'ebb' to 'block' in *.clif
* Manually rename clif constant that contains 'ebb' as substring to avoid conflict
* Automatically rename filecheck uses of 'EBB' to 'BB'
'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'
* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif
* Automatically rename 'an block' to 'a block' in *.clif
* Fix broken testcase when function name length increases
Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.
* All: Drop 'basic-blocks' feature
This makes it so that 'basic-blocks' cannot be disabled and we can
start assuming it everywhere.
* Tests: Replace non-bb filetests with bb version
* Tests: Adapt solver-fixedconflict filetests to use basic blocks
This commit aligns the representation of stackmaps to be the same
as Spidermonkey's by:
* Reversing the order of the bitmap from low addresses to high addresses
* Including incoming stack arguments
* Excluding outgoing stack arguments
Additionally, some accessor functions were added to allow Spidermonkey
to access the internals of the bitmap.
* Use `is_wasm_parameter` in translating wasm calls
Added in #1329 it's now possible for multiple parameters to be non-wasm
parameters, so the previous `param_types` method is no longer suitable
for acquiring all wasm-related parameters, rather then `FuncEnvironment`
must be consulted. This removes usage of `param_types()` as a method
from the wasm translation and instead adds a custom method inline for
filtering the parameters based on `is_wasm_parameter`.
* Apply feedback
* Run rustfmt
* Don't require `mut`
* Run rustfmt
* Correctly count the number of wasm parameters.
Following up on #1329, this further replaces `num_normal_params` with a function
which calls `is_wasm_parameter` to correctly count the number of wasm
parameters a function has.
* Move is_wasm_parameter's implementation into the trait.
This is a breaking API change: the following settings have been renamed:
- jump_tables_enabled -> enable_jump_tables
- colocated_libcalls -> use_colocated_libcalls
- probestack_enabled -> enable_probestack
- allones_funcaddrs -> emit_all_ones_funcaddrs
* Bitcast vectors immediately before a return
* Bitcast vectors immediately before a block end
* Use helper function for bitcasting arguments
* Add FuncTranslationState::peekn_mut; allows mutating of peeked values
* Bitcast values in place, avoiding an allocation
Also, retrieves the correct EBB header types for bitcasting on Operator::End.
* Bitcast values of a function with no explicit Wasm return instruction
* Add Signature::return_types method
This eliminates some duplicate code and avoids extra `use`s of `Vec`.
* Add Signature::param_types method; only collect normal parameters in both this and Signature::return_types
* Move normal_args to Signature::num_normal_params method
This matches the organization of the other Signature::num_*_params methods.
* Bitcast values of Operator::Call and Operator::CallIndirect
* Add DataFlowGraph::ebb_param_types
* Bitcast values of Operator::Br and Operator::BrIf
* Bitcast values of Operator::BrTable