Value aliases aren't instructions, so they don't have a location in the
CFG, so it's not meaningful to query whether a value alias is defined
within a loop.
* cton-util: fix some clippy unnecessary pass-by-value warnings
* clippy: ignore too many arguments / cyclomatic complexity in module
since these functions are taking args coming from the command line, i
dont think this is actually a valid lint, morally the arguments are all
from one structure
* cton-util: take care of remaining clippy warnings
* cton-reader: fix all non-suspicious clippy warnings
* cton-reader: disable clippy at site of suspicious lint
* cton-frontend: disable clippy at the site of an invalid lint
* cton-frontend: fix clippy warnings, or ignore benign ones
* clippy: ignore the camelcase word WebAssembly in docs
* cton-wasm: fix clippy complaints or ignore benign ones
* cton-wasm tests: fix clippy complaints
* cretonne: starting point turns off all clippy warnings
* cretonne: clippy fixes, or lower allow() to source of problem
* cretonne: more clippy fixes
* cretonne: fix or disable needless_lifetimes lint
this linter is buggy when the declared lifetime is used for another type
constraint.
* cretonne: fix clippy complaint about Pass::NoPass
* rustfmt
* fix prev minor api changes clippy suggested
* add clippy to test-all
* cton-filetests: clippy fixes
* simplify clippy reporting in test-all
* cretonne: document clippy allows better
* cretonne: fix some more clippy lints
* cretonne: fix clippy lints (mostly doc comments)
* cretonne: allow all needless_lifetimes clippy warnings
remove overrides at the false positives
* rustfmt
Merge the `use` parts of the `no_std` branch. This reduces the diffs
between master and the `no_std` branch, making it easier to maintain.
Most of these changes are derived from patches by @lachlansneff in
https://github.com/Cretonne/cretonne/tree/no_std.
Individual compilation passes call the corresponding timing::*()
function and hold on to their timing token while they run. This causes
nested per-pass timing information to be recorded in thread-local
storage.
The --time-passes command line option prints a pass timing report to
stdout.
Define two public iterator types in the flowgraph module, PredIter and
SuccIter, which are by-value iterators over an EBB's predecessors and
successors respectively.
Provide matching pred_iter() and succ_iter() methods for inspecting the
CFG. Remove the get_predecessors() method which returned a slice.
Update the uses of get_predecessors(), none of which depended on it
being a slice.
This abstraction makes it possible to change the internal representation
of the CFG.
This has two advantages over the previous Vec<Ebb>:
- Duplicates are removed.
- Clearing the control flow graph is constant time.
The set of EBB successors is simply ordered by EBB number.
Add EBB parameter and EBB argument to the langref glossary to clarify
the distinction between formal EBB parameter values and arguments passed
to branches.
- Replace "ebb_arg" with "ebb_param" in function names that deal with
EBB parameters.
- Rename the ValueDef variants to Result and Param.
- A bunch of other small langref fixes.
No functional changes intended.
* Make passes assert their dependencies consistently.
This avoids ambiguity about whose responsibility it is to run
to compute cfg, domtree, and loop_analysis data.
* Reset the `valid` flag in DominatorTree's `clear()`.
* Remove the redundant assert from DominatorTree::with_function.
* Remove the message strings from obvious asserts.
This avoids having them spill out into multiple lines.
* Refactor calls to `compute` on `Context` objects into helper functions.
Give LoopAnalysis `is_valid` and `ensure` functions similar to
DominatorTree and others, so that it can be computed on demand in the
same way.
This removes the last need for src/wasm.rs to have embedded knowledge
of the dependencies of the passes it's running.
Also, move flowgraph() calls out of filetest and into the passes that
need them so that filetest doesn't have embedded knowledge of these
dependencies.
This resolves a TODO about the way Context was running the verifier, and
it makes the Context functions and the filetest runners more transparent.
This also fixes simple_gvn to use the existing dominator tree rather
than computing its own.
This also moves the calls to it out of Context and into the passes that
actually need it, so that Context's functions don't have any logic of
their own.
The Cursor navigation methods all just depend on the cursor's position
and layout reference. Make a CursorBase trait that provides access to
this information with methods and implement the navigation methods on
top of that.
This makes it possible to have multiple types implement the cursor
interface.
* Replace a single-character string literal with a character literal.
* Use is_some() instead of comparing with Some(_).
* Add code-quotes around type names in comments.
* Use !...is_empty() instead of len() != 0.
* Tidy up redundant returns.
* Remove redundant .clone() calls.
* Remove unnecessary explicit lifetime parameters.
* Tidy up unnecessary '&'s.
* Add parens to make operator precedence explicit.
* Use debug_assert_eq instead of debug_assert with ==.
* Replace a &Vec argument with a &[...].
* Replace `a = a op b` with `a op= b`.
* Avoid unnecessary closures.
* Avoid .iter() and .iter_mut() for iterating over containers.
* Remove unneeded qualification.
* LICM pass
* Uses loop analysis to detect loop tree
* For each loop (starting with the inner ones), create a pre-header and move there loop-invariant instructions
* An instruction is loop invariant if it does not use as argument a value defined earlier in the loop
* File tests to check LICM's correctness
* Optimized pre-header creation
If the loop already has a natural pre-header, we use it instead of creating a new one.
The natural pre-header of a loop is the only predecessor of the header it doesn't dominate.