Cranelift shuffles require indices to be in-bounds, which the
avx512-using backend also requires via a debug assert, so this commit
fixes a test with simd shuffles to only use in-bounds indices.
This is motivated by another failure on CI where the machine we were
running on presumably had avx512 things enabled. This should fix those
failures.
Closes#3581
* aarch64: Migrate some bit-ops to ISLE
This commit migrates these instructions to ISLE:
* `bnot`
* `band`
* `bor`
* `bxor`
* `band_not`
* `bor_not`
* `bxor_not`
The translations were relatively straightforward but the interesting
part here was trying to reduce the duplication between all these
instructions. I opted for a route that's similar to what the lowering
does today, having a `decl` which takes the `ALUOp` and then performs
further pattern matching internally. This enabled each instruction's
lowering to be pretty simple while we still get to handle all the fancy
cases of shifts, constants, etc, for each instruction.
* Actually delete previous lowerings
* Remove dead code
This commit migrates the sign/zero extension instructions from
`lower_inst.rs` to ISLE. There's actually a fair amount going on in this
migration since a few other pieces needed touching up along the way as
well:
* First is the actual migration of `uextend` and `sextend`. These
instructions are relatively simple but end up having a number of special
cases. I've attempted to replicate all the cases here but
double-checks would be good.
* This commit actually fixes a few issues where if the result of a vector
extraction is sign/zero-extended into i128 that actually results in
panics in the current backend.
* This commit adds exhaustive testing for
extension-of-a-vector-extraction is a noop wrt extraction.
* A bugfix around ISLE glue was required to get this commit working,
notably the case where the `RegMapper` implementation was trying to
map an input to an output (meaning ISLE was passing through an input
unmodified to the output) wasn't working. This requires a `mov`
instruction to be generated and this commit updates the glue to do
this. At the same time this commit updates the ISLE glue to share more
infrastructure between x64 and aarch64 so both backends get this fix
instead of just aarch64.
Overall I think that the translation to ISLE was a net benefit for these
instructions. It's relatively obvious what all the cases are now unlike
before where it took a few reads of the code and some boolean switches
to figure out which path was taken for each flavor of input. I think
there's still possible improvements here where, for example, the
`put_in_reg_{s,z}ext64` helper doesn't use this logic so technically
those helpers could also pattern match the "well atomic loads and vector
extractions automatically do this for us" but that's a possible future
improvement for later (and shouldn't be too too hard with some ISLE
refactoring).
* aarch64: Migrate {s,u}{div,rem} to ISLE
This commit migrates four different instructions at once to ISLE:
* `sdiv`
* `udiv`
* `srem`
* `urem`
These all share similar codegen and center around the `div` instruction
to use internally. The main feature of these was to model the manual
traps since the `div` instruction doesn't trap on overflow, instead
requiring manual checks to adhere to the semantics of the instruction
itself.
While I was here I went ahead and implemented an optimization for these
instructions when the right-hand-side is a constant with a known value.
For `udiv`, `srem`, and `urem` if the right-hand-side is a nonzero
constant then the checks for traps can be skipped entirely. For `sdiv`
if the constant is not 0 and not -1 then additionally all checks can be
elided. Finally if the right-hand-side of `sdiv` is -1 the zero-check is
elided, but it still needs a check for `i64::MIN` on the left-hand-side
and currently there's a TODO where `-1` is still checked too.
* Rebasing and review conflicts
* x64: expand FloatCC enum in ISLE
* isle: regenerate manifests
* isle: generate all enum fields in `clif.isle`
This expands the `gen_isle` function to write all of the immediate
`enum`s out explicitly in `clif.isle`. Non-`enum` immediates are still
`extern primitive`.
* Only compile `enum_values` with `rebuild-isle` feature
* Only compile `gen_enum_isle` with `rebuild-isle` feature
This register is not initialized, but we protect against its being used
by never allowing an iflags/fflags-typed value to be used with
`put_value_in_regs`. All `iflags`/`fflags` usages should be handled by
pattern-matching: e.g., `trapif` explicitly matches an `iadd_ifcout`
input.
Eventually (#3249) we need to simplify this by removing
iflags/fflags-tyepd values and using bool flags instead,
pattern-matching to get the same efficient lowerings as today. For now,
this allows the ISLE assertions to pass.
This documentation provides details for all of the ISLE language
features, and detailed rationale for why many of them are designed in
the way that they are. It is hopefully both a reasonable tutorial and
reference for someone looking to understand the DSL.
Note that this documentation is separate from and orthogonal to the
work to document the Cranelift bindings and integration work that
@fitzgen has covered well in #3556. This document can link to that one
and vice-versa once they are both in-tree.
This starts moving over some sign/zero-extend helpers also present in
lowering in Rust. Otherwise this is a relatively unsurprising transition
with the various cases of the instructions mapping well to ISLE
utilities.
This commit migrates the `imul` clif instruction lowering for AArch64 to
ISLE. This is a relatively complicated instruction with lots of special
cases due to the simd proposal for wasm. Like x64, however, the special
casing lends itself to ISLE quite well and the lowerings here in theory
are pretty straightforward.
The main gotcha of this commit is that this encounters a unique
situation which hasn't been encountered yet with other lowerings, namely
the `Umlal32` instruction used in the implementation of `i64x2.mul` is
unique in the `VecRRRLongOp` class of instructions in that it both reads
and writes the destination register (`use_mod` instead of simply
`use_def`). This meant that I needed to add another helper in ISLe for
creating a `vec_rrrr_long` instruction (despite this enum variant not
actually existing) which implicitly moves the first operand into the
destination before issuing the actual `VecRRRLong` instruction.
This takes an IntCC for the comparison to do, though panics for Signed*
since memcmp is an unsigned comparison. Currently it's most useful for
(Not)Equal, but once big-endian loads are implemented it'll be able to
support the other Unsigned* comparisons nicely on more than just bytes.
The comment says the enum is "likely to grow" and the function's been in libc since C89, so hopefully this is ok.
I'd like to use it for emitting things like array equality.
In [this
comment](https://github.com/bytecodealliance/wasmtime/pull/3545#discussion_r756284757)
I noted a potential subtle issue with the way that a few rules were
written that is fine now but could cause some unexpected pain when we
get around to verification.
Specifically, a set of rules of the form
```
(rule (A (B _)) (C))
(rule (A _) (D))
```
should, under any reasonable "default" rule ordering scheme, fire the
more specific rule `(A (B _))` when applicable, in preference to the
second "fallback" rule.
However, for future verification-specific applications of ISLE, we want
to ensure the property that a rule's meaning/validity is not dependent
on being overridden by more specific rules. In other words, if a rule
specifies a rewrite, that rewrite should always be correct; and choosing
a more specific rule can give a *better* compilation (better generated
code) but should not be necessary for correctness.
This is an admittedly under-documented part of the language, though in the
pending #3560 I added a note about rule ordering being a heuristic that
should hopefully make this slightly clearer. Ultimately I want to have
tests that choose non-default rule orderings and differentially fuzz in
order to be sure that we're following this principle; and of course once
we're actually doing verification, we'll catch issues like this upfront.
Apologies for the subtle footgun here and hopefully the reasoning is
clear enough :-)
As reported in #3173, the `select` instruction fails an assertion when it is given `v128` types as operands. This change relaxes the assertion to allow the same type of XMM move that occurs for the f32 and f64 types. This fixes#3173 in the old `lower.rs` code temporarily until the relatively complex `select` lowering can be ported to ISLE.
This commit is the first "meaty" instruction added to ISLE for the
AArch64 backend. I chose to pick the first two in the current lowering's
`match` statement, `isub` and `iadd`. These two turned out to be
particularly interesting for a few reasons:
* Both had clearly migratable-to-ISLE behavior along the lines of
special-casing per type. For example 128-bit and vector arithmetic
were both easily translateable.
* The `iadd` instruction has special cases for fusing with a
multiplication to generate `madd` which is expressed pretty easily in
ISLE.
* Otherwise both instructions had a number of forms where they attempted
to interpret the RHS as various forms of constants, extends, or
shifts. There's a bit of a design space of how best to represent this
in ISLE and what I settled on was to have a special case for each form
of instruction, and the special cases are somewhat duplicated between
`iadd` and `isub`. There's custom "extractors" for the special cases
and instructions that support these special cases will have an
`rule`-per-case.
Overall I think the ISLE transitioned pretty well. I don't think that
the aarch64 backend is going to follow the x64 backend super closely,
though. For example the x64 backend is having a helper-per-instruction
at the moment but with AArch64 it seems to make more sense to only have
a helper-per-enum-variant-of-`MInst`. This is because the same
instruction (e.g. `ALUOp::Sub32`) can be expressed with multiple
different forms depending on the payload.
It's worth noting that the ISLE looks like it's a good deal larger than
the code actually being removed from lowering as part of this commit. I
think this is deceptive though because a lot of the logic in
`put_input_in_rse_imm12_maybe_negated` and `alu_inst_imm12` is being
inlined into the ISLE definitions for each instruction instead of having
it all packed into the helper functions. Some of the "boilerplate" here
is the addition of various ISLE utilities as well.