* Upgrade all crates to the Rust 2021 edition
I've personally started using the new format strings for things like
`panic!("some message {foo}")` or similar and have been upgrading crates
on a case-by-case basis, but I think it probably makes more sense to go
ahead and blanket upgrade everything so 2021 features are always
available.
* Fix compile of the C API
* Fix a warning
* Fix another warning
* Bump to 0.36.0
* Add a two-week delay to Wasmtime's release process
This commit is a proposal to update Wasmtime's release process with a
two-week delay from branching a release until it's actually officially
released. We've had two issues lately that came up which led to this proposal:
* In #3915 it was realized that changes just before the 0.35.0 release
weren't enough for an embedding use case, but the PR didn't meet the
expectations for a full patch release.
* At Fastly we were about to start rolling out a new version of Wasmtime
when over the weekend the fuzz bug #3951 was found. This led to the
desire internally to have a "must have been fuzzed for this long"
period of time for Wasmtime changes which we felt were better
reflected in the release process itself rather than something about
Fastly's own integration with Wasmtime.
This commit updates the automation for releases to unconditionally
create a `release-X.Y.Z` branch on the 5th of every month. The actual
release from this branch is then performed on the 20th of every month,
roughly two weeks later. This should provide a period of time to ensure
that all changes in a release are fuzzed for at least two weeks and
avoid any further surprises. This should also help with any last-minute
changes made just before a release if they need tweaking since
backporting to a not-yet-released branch is much easier.
Overall there are some new properties about Wasmtime with this proposal
as well:
* The `main` branch will always have a section in `RELEASES.md` which is
listed as "Unreleased" for us to fill out.
* The `main` branch will always be a version ahead of the latest
release. For example it will be bump pre-emptively as part of the
release process on the 5th where if `release-2.0.0` was created then
the `main` branch will have 3.0.0 Wasmtime.
* Dates for major versions are automatically updated in the
`RELEASES.md` notes.
The associated documentation for our release process is updated and the
various scripts should all be updated now as well with this commit.
* Add notes on a security patch
* Clarify security fixes shouldn't be previewed early on CI
This change removes all variants of `load*_complex` and `store*_complex`
from Cranelift; this is a breaking change to the instructions exposed by
CLIF. The complete list of instructions removed is: `load_complex`,
`store_complex`, `uload8_complex`, `sload8_complex`, `istore8_complex`,
`sload8_complex`, `uload16_complex`, `sload16_complex`,
`istore16_complex`, `uload32_complex`, `sload32_complex`,
`istore32_complex`, `uload8x8_complex`, `sload8x8_complex`,
`sload16x4_complex`, `uload16x4_complex`, `uload32x2_complex`,
`sload32x2_complex`.
The rationale for this removal is that the Cranelift backend now has the
ability to pattern-match multiple upstream additions in order to
calculate the address to access. Previously, this was not possible so
the `*_complex` instructions were needed. Over time, these instructions
have fallen out of use in this repository, making the additional
overhead of maintaining them a chore.
Addresses #3809: when we are asked to create a Cranelift backend with
shared flags that indicate support for SIMD, we should check that the
ISA level needed for our SIMD lowerings is present.
This commit adds support for denoting cold blocks in the CLIF text
format as follows:
```plain
function %f() {
block0(...):
...
block1 cold:
...
block2(...) cold:
...
block3:
...
```
With this syntax, we are able to see the cold-block flag in CLIF, we can
write tests using it, and it is preserved when round-tripping.
Fixes#3701.
This also paves the way for unifying TargetIsa and MachBackend, since now they map one to one. In theory the two traits could be merged, which would be nice to limit the number of total concepts. Also they have quite different responsibilities, so it might be fine to keep them separate.
Interestingly, this PR started as removing RegInfo from the TargetIsa trait since the adapter returned a dummy value there. From the fallout, noticed that all Display implementations didn't needed an ISA anymore (since these were only used to render ISA specific registers). Also the whole family of RegInfo / ValueLoc / RegUnit was exclusively used for the old backend, and these could be removed. Notably, some IR instructions needed to be removed, because they were using RegUnit too: this was the oddball of regfill / regmove / regspill / copy_special, which were IR instructions inserted by the old regalloc. Fare thee well!
Transforming this into a generic function is proving to be a challenge
since most of the necessary methods are not in a trait. We also need to
cast between the signed and unsigned types, which is difficult to do
in a generic function.
This can be solved for example by adding the num crate as a dependency.
But adding a dependency just to solve this issue seems a bit much.
Implemented `SaddSat` and `SsubSat` to add and subtract signed vector
values, saturating at the type boundaries rather than overflowing.
Changed the parser to allow signed `i8` immediates in vectors as part of
this work; fixes#3276.
Copyright (c) 2021, Arm Limited.
* cranelift: Add heap support to filetest infrastructure
* cranelift: Explicit heap pointer placement in filetest annotations
* cranelift: Add documentation about the Heap directive
* cranelift: Clarify that heap filetests pointers must be laid out sequentially
* cranelift: Use wrapping add when computing bound pointer
* cranelift: Better error messages when invalid signatures are found for heap file tests.
This PR switches the default backend on x86, for both the
`cranelift-codegen` crate and for Wasmtime, to the new
(`MachInst`-style, `VCode`-based) backend that has been under
development and testing for some time now.
The old backend is still available by default in builds with the
`old-x86-backend` feature, or by requesting `BackendVariant::Legacy`
from the appropriate APIs.
As part of that switch, it adds some more runtime-configurable plumbing
to the testing infrastructure so that tests can be run using the
appropriate backend. `clif-util test` is now capable of parsing a
backend selector option from filetests and instantiating the correct
backend.
CI has been updated so that the old x86 backend continues to run its
tests, just as we used to run the new x64 backend separately.
At some point, we will remove the old x86 backend entirely, once we are
satisfied that the new backend has not caused any unforeseen issues and
we do not need to revert.
This bumps target-lexicon and adds support for the AppleAarch64 calling
convention. Specifically for WebAssembly support, we only have to worry
about the new stack slots convention. Stack slots don't need to be at
least 8-bytes, they can be as small as the data type's size. For
instance, if we need stack slots for (i32, i32), they can be located at
offsets (+0, +4). Note that they still need to be properly aligned on
the data type they're containing, though, so if we need stack slots for
(i32, i64), we can't start the i64 slot at the +4 offset (it must start
at the +8 offset).
Added one test that was failing on the Mac M1, as well as other tests
stressing different yet similar situations.
Our previous implementation of unwind infrastructure was somewhat
complex and brittle: it parsed generated instructions in order to
reverse-engineer unwind info from prologues. It also relied on some
fragile linkage to communicate instruction-layout information that VCode
was not designed to provide.
A much simpler, more reliable, and easier-to-reason-about approach is to
embed unwind directives as pseudo-instructions in the prologue as we
generate it. That way, we can say what we mean and just emit it
directly.
The usual reasoning that leads to the reverse-engineering approach is
that metadata is hard to keep in sync across optimization passes; but
here, (i) prologues are generated at the very end of the pipeline, and
(ii) if we ever do a post-prologue-gen optimization, we can treat unwind
directives as black boxes with unknown side-effects, just as we do for
some other pseudo-instructions today.
It turns out that it was easier to just build this for both x64 and
aarch64 (since they share a factored-out ABI implementation), and wire
up the platform-specific unwind-info generation for Windows and SystemV.
Now we have simpler unwind on all platforms and we can delete the old
unwind infra as soon as we remove the old backend.
There were a few consequences to supporting Fastcall unwind in
particular that led to a refactor of the common ABI. Windows only
supports naming clobbered-register save locations within 240 bytes of
the frame-pointer register, whatever one chooses that to be (RSP or
RBP). We had previously saved clobbers below the fixed frame (and below
nominal-SP). The 240-byte range has to include the old RBP too, so we're
forced to place clobbers at the top of the frame, just below saved
RBP/RIP. This is fine; we always keep a frame pointer anyway because we
use it to refer to stack args. It does mean that offsets of fixed-frame
slots (spillslots, stackslots) from RBP are no longer known before we do
regalloc, so if we ever want to index these off of RBP rather than
nominal-SP because we add support for `alloca` (dynamic frame growth),
then we'll need a "nominal-BP" mode that is resolved after regalloc and
clobber-save code is generated. I added a comment to this effect in
`abi_impl.rs`.
The above refactor touched both x64 and aarch64 because of shared code.
This had a further effect in that the old aarch64 prologue generation
subtracted from `sp` once to allocate space, then used stores to `[sp,
offset]` to save clobbers. Unfortunately the offset only has 7-bit
range, so if there are enough clobbered registers (and there can be --
aarch64 has 384 bytes of registers; at least one unit test hits this)
the stores/loads will be out-of-range. I really don't want to synthesize
large-offset sequences here; better to go back to the simpler
pre-index/post-index `stp r1, r2, [sp, #-16]` form that works just like
a "push". It's likely not much worse microarchitecturally (dependence
chain on SP, but oh well) and it actually saves an instruction if
there's no other frame to allocate. As a further advantage, it's much
simpler to understand; simpler is usually better.
This PR adds the new backend on Windows to CI as well.
* Remove some uses of riscv in tests
* Fix typo
* Apply suggestions from code review
* Apply suggestions from code review
Co-authored-by: Benjamin Bouvier <public@benj.me>
As discussed in #2251, in order to be very confident that NaN signaling bits are correctly handled by the compiler, this switches `DataValue` to use Cranelift's `Ieee32` and `Ieee64` structures. This makes it a bit more inconvenient to interpreter Cranelift FP operations but this should change to something like `rustc_apfloat` in the future.
This adds a new feature experimental_x64 for CLIF tests.
A test is run in the new x64 backend iff:
- either the test doesn't have an x86_64 target requirement, signaling
it must be target agnostic or not run on this target.
- or the test does require the x86_64 target, and the test is marked
with the `experimental_x64` feature.
This required one workaround in the parser. The reason is that the
parser will try to use information not provided by the TargetIsa adapter
for the Mach backends, like register names. In particular, parsing test
may fail before the test runner realizes that the test must not be run.
In this case, we early return an almost-empty TestFile from the parser,
under the same conditions as above, so that the caller may filter out
the test properly.
This also copies two tests from the test suite using the new backend,
for demonstration purposes.
Clif files are not meant to be written by end-users anyway. The main
effects are that non-ascii identifiers fail to lex instead of parse and
whitespace must now be in the ascii range. Comments still have full
unicode support.
This also inlines all char::is_* methods to avoid nested matches.
Overall this results in a slight reduction of instruction count.
The implementation is pretty straightforward. Wasm atomic instructions fall
into 5 groups
* atomic read-modify-write
* atomic compare-and-swap
* atomic loads
* atomic stores
* fences
and the implementation mirrors that structure, at both the CLIF and AArch64
levels.
At the CLIF level, there are five new instructions, one for each group. Some
comments about these:
* for those that take addresses (all except fences), the address is contained
entirely in a single `Value`; there is no offset field as there is with
normal loads and stores. Wasm atomics require alignment checks, and
removing the offset makes implementation of those checks a bit simpler.
* atomic loads and stores get their own instructions, rather than reusing the
existing load and store instructions, for two reasons:
- per above comment, makes alignment checking simpler
- reuse of existing loads and stores would require extension of `MemFlags`
to indicate atomicity, which sounds semantically unclean. For example,
then *any* instruction carrying `MemFlags` could be marked as atomic, even
in cases where it is meaningless or ambiguous.
* I tried to specify, in comments, the behaviour of these instructions as
tightly as I could. Unfortunately there is no way (per my limited CLIF
knowledge) to enforce the constraint that they may only be used on I8, I16,
I32 and I64 types, and in particular not on floating point or vector types.
The translation from Wasm to CLIF, in `code_translator.rs` is unremarkable.
At the AArch64 level, there are also five new instructions, one for each
group. All of them except `::Fence` contain multiple real machine
instructions. Atomic r-m-w and atomic c-a-s are emitted as the usual
load-linked store-conditional loops, guarded at both ends by memory fences.
Atomic loads and stores are emitted as a load preceded by a fence, and a store
followed by a fence, respectively. The amount of fencing may be overkill, but
it reflects exactly what the SM Wasm baseline compiler for AArch64 does.
One reason to implement r-m-w and c-a-s as a single insn which is expanded
only at emission time is that we must be very careful what instructions we
allow in between the load-linked and store-conditional. In particular, we
cannot allow *any* extra memory transactions in there, since -- particularly
on low-end hardware -- that might cause the transaction to fail, hence
deadlocking the generated code. That implies that we can't present the LL/SC
loop to the register allocator as its constituent instructions, since it might
insert spills anywhere. Hence we must present it as a single indivisible
unit, as we do here. It also has the benefit of reducing the total amount of
work the RA has to do.
The only other notable feature of the r-m-w and c-a-s translations into
AArch64 code, is that they both need a scratch register internally. Rather
than faking one up by claiming, in `get_regs` that it modifies an extra
scratch register, and having to have a dummy initialisation of it, these new
instructions (`::LLSC` and `::CAS`) simply use fixed registers in the range
x24-x28. We rely on the RA's ability to coalesce V<-->R copies to make the
cost of the resulting extra copies zero or almost zero. x24-x28 are chosen so
as to be call-clobbered, hence their use is less likely to interfere with long
live ranges that span calls.
One subtlety regarding the use of completely fixed input and output registers
is that we must be careful how the surrounding copy from/to of the arg/result
registers is done. In particular, it is not safe to simply emit copies in
some arbitrary order if one of the arg registers is a real reg. For that
reason, the arguments are first moved into virtual regs if they are not
already there, using a new method `<LowerCtx for Lower>::ensure_in_vreg`.
Again, we rely on coalescing to turn them into no-ops in the common case.
There is also a ridealong fix for the AArch64 lowering case for
`Opcode::Trapif | Opcode::Trapff`, which removes a bug in which two trap insns
in a row were generated.
In the patch as submitted there are 6 "FIXME JRS" comments, which mark things
which I believe to be correct, but for which I would appreciate a second
opinion. Unless otherwise directed, I will remove them for the final commit
but leave the associated code/comments unchanged.