In #3721, we have been discussing what to do about the ARM32 backend in
Cranelift. Currently, this backend supports only 32-bit types, which is
insufficient for full Wasm-MVP; it's missing other critical bits, like
floating-point support; and it has only ever been exercised, AFAIK, via
the filetests for the individual CLIF instructions that are implemented.
We were very very thankful for the original contribution of this
backend, even in its partial state, and we had hoped at the time that we
could eventually mature it in-tree until it supported e.g. Wasm and
other use-cases. But that hasn't yet happened -- to the blame of no-one,
to be clear, we just haven't had a contributor with sufficient time.
Unfortunately, the existence of the backend and lack of active
maintainer now potentially pose a bit of a burden as we hope to make
continuing changes to the backend framework. For example, the ISLE
migration, and the use of regalloc2 that it will allow, would need all
of the existing lowering patterns in the hand-written ARM32 backend to
be rewritten as ISLE rules.
Given that we don't currently have the resources to do this, we think
it's probably best if we, sadly, for now remove this partial backend.
This is not in any way a statement of what we might accept in the
future, though. If, in the future, an ARM32 backend updated to our
latest codebase with an active maintainer were to appear, we'd be happy
to merge it (and likewise for any other architecture!). But for now,
this is probably the best path. Thanks again to the original contributor
@jmkrauz and we hope that this work can eventually be brought back and
reused if someone has the time to do so!
This adds support for the "fastcall" ABI, which is the native C/C++ ABI
on Windows platforms on x86-64. It is similar to but not exactly like
System V; primarily, its argument register assignments are different,
and it requires stack shadow space.
Note that this also adjusts the handling of multi-register values in the
shared ABI implementation, and with this change, adjusts handling of
`i128`s on *both* Fastcall/x64 *and* SysV/x64 platforms. This was done
to align with actual behavior by the "rustc ABI" on both platforms, as
mapped out experimentally (Compiler Explorer link in comments). This
behavior is gated under the `enable_llvm_abi_extensions` flag.
Note also that this does *not* add x64 unwind info on Windows. That will
come in a future PR (but is planned!).
This will allow for support for `I128` values everywhere, and `I64`
values on 32-bit targets (e.g., ARM32 and x86-32). It does not alter the
machine backends to build such support; it just adds the framework for
the MachInst backends to *reason* about a `Value` residing in more than
one register.