I'm not too well-versed in this area of debuginfo, but I think this
should address #3184 where it appears not all compilers emit
`DW_AT_comp_dir`. This seems to match the default behavior of `gimli`
when it maps an existing line program to a new line program as well
(choosing an empty name for the compilation directory).
Closes#3184
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.
This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:
* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
server as an abstraction used to create compilers and configure them
in a uniform fashion. The `wasmtime::Config` type now uses this
instead of cranelift-specific settings. The `wasmtime-jit` crate
exports the ability to create a compiler builder from a
`CompilationStrategy`, which only works for Cranelift right now. In a
cranelift-less build of Wasmtime this is expected to return a trait
object that fails all requests to compile.
* The `Compiler` trait in the `wasmtime_environ` crate has been souped
up with a number of methods that Wasmtime and other crates needed.
* The `wasmtime-debug` crate is now moved entirely behind the
`wasmtime-cranelift` crate.
* The `wasmtime-cranelift` crate is now only depended on by the
`wasmtime-jit` crate.
* Wasm types in `cranelift-wasm` no longer contain their IR type,
instead they only contain the `WasmType`. This is required to get
everything to align correctly but will also be required in a future
refactoring where the types used by `cranelift-wasm` will be extracted
to a separate crate.
* I moved around a fair bit of code in `wasmtime-cranelift`.
* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
`wasmtime-jit`.
* Move all trampoline compilation to `wasmtime-cranelift`
This commit moves compilation of all the trampolines used in wasmtime
behind the `Compiler` trait object to live in `wasmtime-cranelift`. The
long-term goal of this is to enable depending on cranelift *only* from
the `wasmtime-cranelift` crate, so by moving these dependencies we
should make that a little more flexible.
* Fix windows build
* Implement the memory64 proposal in Wasmtime
This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.
A number of internal and public interfaces are changing as a result of
this commit, for example:
* Acessors on `wasmtime::Memory` that work with pages now all return
`u64` unconditionally rather than `u32`. This makes it possible to
accommodate 64-bit memories with this API, but we may also want to
consider `usize` here at some point since the host can't grow past
`usize`-limited pages anyway.
* The `wasmtime::Limits` structure is removed in favor of
minimum/maximum methods on table/memory types.
* Many libcall intrinsics called by jit code now unconditionally take
`u64` arguments instead of `u32`. Return values are `usize`, however,
since the return value, if successful, is always bounded by host
memory while arguments can come from any guest.
* The `heap_addr` clif instruction now takes a 64-bit offset argument
instead of a 32-bit one. It turns out that the legalization of
`heap_addr` already worked with 64-bit offsets, so this change was
fairly trivial to make.
* The runtime implementation of mmap-based linear memories has changed
to largely work in `usize` quantities in its API and in bytes instead
of pages. This simplifies various aspects and reflects that
mmap-memories are always bound by `usize` since that's what the host
is using to address things, and additionally most calculations care
about bytes rather than pages except for the very edge where we're
going to/from wasm.
Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.
In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:
* All memory accesses are bounds-checked. I'm not sure how aggressively
Cranelift tries to optimize out bounds checks, but I suspect not a ton
since we haven't stressed this much historically.
* Heaps are always precisely sized. This means that every call to
`memory.grow` will incur a `memcpy` of memory from the old heap to the
new. We probably want to at least look into `mremap` on Linux and
otherwise try to implement schemes where dynamic heaps have some
reserved pages to grow into to help amortize the cost of
`memory.grow`.
The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.
[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
* Fix some tests
* More test fixes
* Fix wasmtime tests
* Fix doctests
* Revert to 32-bit immediate offsets in `heap_addr`
This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.
* Disable memory64 for spectest fuzzing
* Fix wrong offset being added to heap addr
* More comments!
* Clarify bytes/pages
Previously, the WAT was printed as a log message. This change
standardizes all of the oracles to use `log_wasm`, which emits a `.wasm`
and `.wat` file for each case if `log::debug` is enabled and prints a
message with the names of the created files. Closes#3140.
This new target compares the outputs of executing the first exported
function of a Wasm module in Wasmtime and in the official Wasm spec
interpreter (using the `wasm-spec-interpreter` crate). This is an
initial step towards more fully-featured fuzzing (e.g. compare memories,
add `v128`, add references, add other proposals, etc.)
The WebAssembly spec interpreter is written in OCaml and the new crate
uses `ocaml-interop` along with a small OCaml wrapper to interpret Wasm
modules in-process. The build process for this crate is currently
Linux-specific: it requires several OCaml packages (e.g. `apt install -y
ocaml-nox ocamlbuild`) as well as `make`, `cp`, and `ar`.
This functionality is now subsumed by the limiter built-in to all
fuzzing stores, so there's no longer any need for it. It was also
triggering arithmetic overflows in fuzzing, so instead of fixing I'm
removing it!
* Enable simd fuzzing on oss-fuzz
This commit generally enables the simd feature while fuzzing, which
should affect almost all fuzzers. For fuzzers that just throw random
data at the wall and see what sticks, this means that they'll now be
able to throw simd-shaped data at the wall and have it stick. For
wasm-smith-based fuzzers this commit also updates wasm-smith to 0.6.0
which allows further configuring the `SwarmConfig` after generation,
notably allowing `instantiate-swarm` to generate modules using simd
using `wasm-smith`. This should much more reliably feed simd-related
things into the fuzzers.
Finally, this commit updates wasmtime to avoid usage of the general
`wasm_smith::Module` generator to instead use a Wasmtime-specific custom
default configuration which enables various features we have
implemented.
* Allow dummy table creation to fail
Tables might creation for imports may exceed the memory limit on the
store, which we'll want to gracefully recover from and not fail the
fuzzers.
* fuzz: Implement finer memory limits per-store
This commit implements a custom resource limiter for fuzzing. Locally I
was seeing a lot of ooms while fuzzing and I believe it was generally
caused from not actually having any runtime limits for wasm modules. I'm
actually surprised that this hasn't come up more on oss-fuzz more in
reality, but with a custom store limiter I think this'll get the job
done where we have an easier knob to turn for controlling the memory
usage of fuzz-generated modules.
For now I figure a 2gb limit should be good enough for limiting fuzzer
execution. Additionally the "out of resources" check if instantiation
fails now looks for the `oom` flag to be set instead of pattern matching
on some error messages about resources.
* Fix tests
This commit updates the output of failed expectations in the `wast`
crate to fold in the check-is-the-value-the-same with the
generate-a-nice-message. Additionally this tries to make sure that
everything is aligned in the output to make it a bit more easily
readable. Vectors should notably be improved where lane differences can
be compared vertically in the case of integers and printed out
specifically in the case of floats.
* Consolidate address calculations for atomics
This commit consolidates all calcuations of guest addresses into one
`prepare_addr` function. This notably remove the atomics-specifics paths
as well as the `prepare_load` function (now renamed to `prepare_addr`
and folded into `get_heap_addr`).
The goal of this commit is to simplify how addresses are managed in the
code generator for atomics to use all the shared infrastrucutre of other
loads/stores as well. This additionally fixes#3132 via the use of
`heap_addr` in clif for all operations.
I also added a number of tests for loads/stores with varying alignments.
Originally I was going to allow loads/stores to not be aligned since
that's what the current formal specification says, but the overview of
the threads proposal disagrees with the formal specification, so I
figured I'd leave it as-is but adding tests probably doesn't hurt.
Closes#3132
* Fix old backend
* Guarantee misalignment checks happen before out-of-bounds
* Bump the wasm-tools crates
Pulls in some updates here and there, mostly for updating crates to the
latest version to prepare for later memory64 work.
* Update lightbeam
* Change VMMemoryDefinition::current_length to `usize`
This commit changes the definition of
`VMMemoryDefinition::current_length` to `usize` from its previous
definition of `u32`. This is a pretty impactful change because it also
changes the cranelift semantics of "dynamic" heaps where the bound
global value specifier must now match the pointer type for the platform
rather than the index type for the heap.
The motivation for this change is that the `current_length` field (or
bound for the heap) is intended to reflect the current size of the heap.
This is bound by `usize` on the host platform rather than `u32` or`
u64`. The previous choice of `u32` couldn't represent a 4GB memory
because we couldn't put a number representing 4GB into the
`current_length` field. By using `usize`, which reflects the host's
memory allocation, this should better reflect the size of the heap and
allows Wasmtime to support a full 4GB heap for a wasm program (instead
of 4GB minus one page).
This commit also updates the legalization of the `heap_addr` clif
instruction to appropriately cast the address to the platform's pointer
type, handling bounds checks along the way. The practical impact for
today's targets is that a `uextend` is happening sooner than it happened
before, but otherwise there is no intended impact of this change. In the
future when 64-bit memories are supported there will likely need to be
fancier logic which handles offsets a bit differently (especially in the
case of a 64-bit memory on a 32-bit host).
The clif `filetest` changes should show the differences in codegen, and
the Wasmtime changes are largely removing casts here and there.
Closes#3022
* Add tests for memory.size at maximum memory size
* Add a dfg helper method
This exposes the functionality of the `Linker` type where a
store-independent function can be created and inserted, allowing a
linker's functions to be used across many stores (instead of requiring
one linker-per-store).
Closes#3110
This was needed a long time ago in the original implementation when the
function being called here was hotter than it was before, but nowadays
this function isn't hot as it's protected elsewhere from being
repeatedly called, so the caching thread local is no longer necessary.
This commit adds some clarifying documentation to both the `ModuleLimits` and
`InstanceLimits` types in the Wasmtime API.
It clarifies how each setting relates to the memory allocated by the pooling
instance allocator.
Closes#3080.
We've got a lot of fuzz failures right now of modules instantiating
memories of 65536 pages, which we specifically disallow since the
representation of limits within Wasmtime don't support full 4GB
memories. This is ok, however, and it's not a fuzz failure that we're
interested in, so this commit allows strings of that error to pass
through the fuzzer.
sync test: show the dummy executor will trap (rather than panic) when a
future inside it pends.
async test: show that the executor is hooked up to a future that pends
for a trivial amount of time.
this adds tokio to the dev-dependencies of wiggle, it shouldn't end up
increasing the build burden for the project as a whole since its already
a dev-dependency.
* Reword env var hint for dwarf debug info
Try not to declare that more information will indeed be displayed,
instead suggest that the output may improve if the env var is set since
dwarf debug info wasn't parsed.
cc bytecodealliance/wasmtime-go#90
* Fix test assertion