This commit changes how both the shared flags and ISA flags are stored in the
serialized module to detect incompatibilities when a serialized module is
instantiated.
It improves the error reporting when a compiled module has mismatched shared
flags.
This commit adds a `compile` command to the Wasmtime CLI.
The command can be used to Ahead-Of-Time (AOT) compile WebAssembly modules.
With the `all-arch` feature enabled, AOT compilation can be performed for
non-native architectures (i.e. cross-compilation).
The `Module::compile` method has been added to perform AOT compilation.
A few of the CLI flags relating to "on by default" Wasm features have been
changed to be "--disable-XYZ" flags.
A simple example of using the `wasmtime compile` command:
```text
$ wasmtime compile input.wasm
$ wasmtime input.cwasm
```
Our previous implementation of unwind infrastructure was somewhat
complex and brittle: it parsed generated instructions in order to
reverse-engineer unwind info from prologues. It also relied on some
fragile linkage to communicate instruction-layout information that VCode
was not designed to provide.
A much simpler, more reliable, and easier-to-reason-about approach is to
embed unwind directives as pseudo-instructions in the prologue as we
generate it. That way, we can say what we mean and just emit it
directly.
The usual reasoning that leads to the reverse-engineering approach is
that metadata is hard to keep in sync across optimization passes; but
here, (i) prologues are generated at the very end of the pipeline, and
(ii) if we ever do a post-prologue-gen optimization, we can treat unwind
directives as black boxes with unknown side-effects, just as we do for
some other pseudo-instructions today.
It turns out that it was easier to just build this for both x64 and
aarch64 (since they share a factored-out ABI implementation), and wire
up the platform-specific unwind-info generation for Windows and SystemV.
Now we have simpler unwind on all platforms and we can delete the old
unwind infra as soon as we remove the old backend.
There were a few consequences to supporting Fastcall unwind in
particular that led to a refactor of the common ABI. Windows only
supports naming clobbered-register save locations within 240 bytes of
the frame-pointer register, whatever one chooses that to be (RSP or
RBP). We had previously saved clobbers below the fixed frame (and below
nominal-SP). The 240-byte range has to include the old RBP too, so we're
forced to place clobbers at the top of the frame, just below saved
RBP/RIP. This is fine; we always keep a frame pointer anyway because we
use it to refer to stack args. It does mean that offsets of fixed-frame
slots (spillslots, stackslots) from RBP are no longer known before we do
regalloc, so if we ever want to index these off of RBP rather than
nominal-SP because we add support for `alloca` (dynamic frame growth),
then we'll need a "nominal-BP" mode that is resolved after regalloc and
clobber-save code is generated. I added a comment to this effect in
`abi_impl.rs`.
The above refactor touched both x64 and aarch64 because of shared code.
This had a further effect in that the old aarch64 prologue generation
subtracted from `sp` once to allocate space, then used stores to `[sp,
offset]` to save clobbers. Unfortunately the offset only has 7-bit
range, so if there are enough clobbered registers (and there can be --
aarch64 has 384 bytes of registers; at least one unit test hits this)
the stores/loads will be out-of-range. I really don't want to synthesize
large-offset sequences here; better to go back to the simpler
pre-index/post-index `stp r1, r2, [sp, #-16]` form that works just like
a "push". It's likely not much worse microarchitecturally (dependence
chain on SP, but oh well) and it actually saves an instruction if
there's no other frame to allocate. As a further advantage, it's much
simpler to understand; simpler is usually better.
This PR adds the new backend on Windows to CI as well.
With `Module::{serialize,deserialize}` it should be possible to share
wasmtime modules across machines or CPUs. Serialization, however, embeds
a hash of all configuration values, including cranelift compilation
settings. By default wasmtime's selection of the native ISA would enable
ISA flags according to CPU features available on the host, but the same
CPU features may not be available across two machines.
This commit adds a `Config::cranelift_clear_cpu_flags` method which
allows clearing the target-specific ISA flags that are automatically
inferred by default for the native CPU. Options can then be
incrementally built back up as-desired with teh `cranelift_other_flag`
method.
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:
- Translate value-label metadata on the input into "value_label"
pseudo-instructions when lowering into VCode. These
pseudo-instructions take a register as input, denote a value label,
and semantically are like a "move into value label" -- i.e., they
update the current value (as seen by debugging tools) of the given
local. These pseudo-instructions emit no machine code.
- Perform a dataflow analysis *at the machine-code level*, tracking
value-labels that propagate into registers and into [SP+constant]
stack storage. This is a forward dataflow fixpoint analysis where each
storage location can contain a *set* of value labels, and each value
label can reside in a *set* of storage locations. (Meet function is
pairwise intersection by storage location.)
This analysis traces value labels symbolically through loads and
stores and reg-to-reg moves, so it will naturally handle spills and
reloads without knowing anything special about them.
- When this analysis converges, we have, at each machine-code offset, a
mapping from value labels to some number of storage locations; for
each offset for each label, we choose the best location (prefer
registers). Note that we can choose any location, as the symbolic
dataflow analysis is sound and guarantees that the value at the
value_label instruction propagates to all of the named locations.
- Then we can convert this mapping into a format that the DWARF
generation code (wasmtime's debug crate) can use.
This PR also adds the new-backend variant to the gdb tests on CI.
A new associated type Info is added to MachInstEmit, which is the
immutable counterpart to State. It can't easily be constructed from an
ABICallee, since it would require adding an associated type to the
latter, and making so leaks the associated type in a lot of places in
the code base and makes the code harder to read. Instead, the EmitInfo
state can simply be passed to the `Vcode::emit` function directly.
This PR updates the AArch64 ABI implementation so that it (i) properly
respects that v8-v15 inclusive have callee-save lower halves, and
caller-save upper halves, by conservatively approximating (to full
registers) in the appropriate directions when generating prologue
caller-saves and when informing the regalloc of clobbered regs across
callsites.
In order to prevent saving all of these vector registers in the prologue
of every non-leaf function due to the above approximation, this also
makes use of a new regalloc.rs feature to exclude call instructions'
writes from the clobber set returned by register allocation. This is
safe whenever the caller and callee have the same ABI (because anything
the callee could clobber, the caller is allowed to clobber as well
without saving it in the prologue).
Fixes#2254.
This commit adds arm32 code generation for some IR insts.
Floating-point instructions are not supported, because regalloc
does not allow to represent overlapping register classes,
which are needed by VFP/Neon.
There is also no support for big-endianness, I64 and I128 types.
* Add x86 encodings for `bint` converting to `i8` and `i16`
* Introduce tests for many multi-value returns
* Support arbitrary numbers of return values
This commit implements support for returning an arbitrary number of return
values from a function. During legalization we transform multi-value signatures
to take a struct return ("sret") return pointer, instead of returning its values
in registers. Callers allocate the sret space in their stack frame and pass a
pointer to it into the caller, and once the caller returns to them, they load
the return values back out of the sret stack slot. The callee's return
operations are legalized to store the return values through the given sret
pointer.
* Keep track of old, pre-legalized signatures
When legalizing a call or return for its new legalized signature, we may need to
look at the old signature in order to figure out how to legalize the call or
return.
* Add test for multi-value returns and `call_indirect`
* Encode bool -> int x86 instructions in a loop
* Rename `Signature::uses_sret` to `Signature::uses_struct_return_param`
* Rename `p` to `param`
* Add a clarifiying comment in `num_registers_required`
* Rename `num_registers_required` to `num_return_registers_required`
* Re-add newline
* Handle already-assigned parameters in `num_return_registers_required`
* Document what some debug assertions are checking for
* Make "illegalizing" closure's control flow simpler
* Add unit tests and comments for our rounding-up-to-the-next-multiple-of-a-power-of-2 function
* Use `append_isnt_arg` instead of doing the same thing manually
* Fix grammar in comment
* Add `Signature::uses_special_{param,return}` helper functions
* Inline the definition of `legalize_type_for_sret_load` for readability
* Move sret legalization debug assertions out into their own function
* Add `round_up_to_multiple_of_type_align` helper for readability
* Add a debug assertion that we aren't removing the wrong return value
* Rename `RetPtr` stack slots to `StructReturnSlot`
* Make `legalize_type_for_sret_store` more symmetrical to `legalized_type_for_sret`
* rustfmt
* Remove unnecessary loop labels
* Do not pre-assign offsets to struct return stack slots
Instead, let the existing frame layout algorithm decide where they should go.
* Expand "sret" into explicit "struct return" in doc comment
* typo: "than" -> "then" in comment
* Fold test's debug message into the assertion itself
* the target-lexicon crate no longer has or needs the std feature
in cargo, so we can delete all default-features=false, any mentions
of its std feature, and the nostd configs in many lib.rs files
* the representation of arm architectures has changed, so some case
statements needed refactoring
-Add resumable_trap, safepoint, isnull, and null instructions
-Add Stackmap struct and StackmapSink trait
Co-authored-by: Mir Ahmed <mirahmed753@gmail.com>
Co-authored-by: Dan Gohman <sunfish@mozilla.com>