Commit Graph

65 Commits

Author SHA1 Message Date
Trevor Elliott
fac4a915a3 Assert that we only use virtual registers with moves (#5440)
Assert that we never see real registers as arguments to move instructions in VCodeBuilder::collect_operands.

Also fix a bug in the riscv64 backend that was discovered by these assertions: the lowerings of get_stack_pointer and get_frame_pointer were using physical registers 8 and 2 directly. The solution was similar to other backends: add a move instruction specifically for moving out of physical registers, whose source operand is opaque to regalloc2.
2022-12-20 18:22:47 -08:00
Trevor Elliott
c5379051c4 Enable the ssa verifier in debug builds (#5354)
Enable regalloc2's SSA verifier in debug builds to check for any outstanding reuse of virtual registers in def constraints. As fuzzing enables debug_assertions, this will enable the SSA verifier when fuzzing as well.
2022-12-07 12:22:51 -08:00
Nick Fitzgerald
6fe69d00ca Cranelift: add debug logs counting how many vcode instructions and blocks we lower to (#5332) 2022-11-28 18:57:02 +00:00
Trevor Elliott
a007e02bd2 Add fixed_nonallocatable constraints when appropriate (#5253)
Plumb the set of allocatable registers through the OperandCollector and use it validate uses of fixed-nonallocatable registers, like %rsp on x86_64.
2022-11-15 12:49:17 -08:00
Trevor Elliott
70bca801ab cranelift: Resize with types::INVALID isntead of types::I8 (#5227) 2022-11-08 20:42:20 +00:00
Trevor Elliott
d94173ea09 Add a VRegAllocator to separate VReg allocation from VCode (#5222)
Remove the dependency on VCode for VReg allocation. This will simplify the changes in #5172, as that PR introduces the need to allocate temporary registers from the ABI context.

This change also allows us to remove some fields from VCode: reftyped_vregs_set and have_ref_values.
2022-11-08 10:05:02 -08:00
Chris Fallin
05cbd667c7 Cranelift: use regalloc2 constraints on caller side of ABI code. (#4892)
* Cranelift: use regalloc2 constraints on caller side of ABI code.

This PR updates the shared ABI code and backends to use register-operand
constraints rather than explicit pinned-vreg moves for register
arguments and return values.

The s390x backend was not updated, because it has its own implementation
of ABI code. Ideally we could converge back to the code shared by x64
and aarch64 (which didn't exist when s390x ported calls to ISLE, so the
current situation is underestandable, to be clear!). I'll leave this for
future work.

This PR exposed several places where regalloc2 needed to be a bit more
flexible with constraints; it requires regalloc2#74 to be merged and
pulled in.

* Update to regalloc2 0.3.3.

In addition to version bump, this required removing two asserts as
`SpillSlot`s no longer carry their class (so we can't assert that they
have the correct class).

* Review comments.

* Filetest updates.

* Add cargo-vet audit for regalloc2 0.3.2 -> 0.3.3 upgrade.

* Update to regalloc2 0.4.0.
2022-09-21 01:17:04 +00:00
Chris Fallin
2986f6b0ff ABI: implement register arguments with constraints. (#4858)
* ABI: implement register arguments with constraints.

Currently, Cranelift's ABI code emits a sequence of moves from physical
registers into vregs at the top of the function body, one for every
register-carried argument.

For a number of reasons, we want to move to operand constraints instead,
and remove the use of explicitly-named "pinned vregs"; this allows for
better regalloc in theory, as it removes the need to "reverse-engineer"
the sequence of moves.

This PR alters the ABI code so that it generates a single "args"
pseudo-instruction as the first instruction in the function body. This
pseudo-inst defs all register arguments, and constrains them to the
appropriate registers at the def-point. Subsequently the regalloc can
move them wherever it needs to.

Some care was taken not to have this pseudo-inst show up in
post-regalloc disassemblies, but the change did cause a general regalloc
"shift" in many tests, so the precise-output updates are a bit noisy.
Sorry about that!

A subsequent PR will handle the other half of the ABI code, namely, the
callsite case, with a similar preg-to-constraint conversion.

* Update based on review feedback.

* Review feedback.
2022-09-08 18:03:14 -07:00
Anton Kirilov
d8b290898c Initial forward-edge CFI implementation (#3693)
* Initial forward-edge CFI implementation

Give the user the option to start all basic blocks that are targets
of indirect branches with the BTI instruction introduced by the
Branch Target Identification extension to the Arm instruction set
architecture.

Copyright (c) 2022, Arm Limited.

* Refactor `from_artifacts` to avoid second `make_executable` (#1)

This involves "parsing" twice but this is parsing just the header of an
ELF file so it's not a very intensive operation and should be ok to do
twice.

* Address the code review feedback

Copyright (c) 2022, Arm Limited.

Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2022-09-08 09:35:58 -05:00
Trevor Elliott
dde2c5a3b6 Align functions according to their ISA's requirements (#4826)
Add a function_alignment function to the TargetIsa trait, and use it to align functions when generating objects. Additionally, collect the maximum alignment required for pc-relative constants in functions and pass that value out. Use the max of these two values when padding functions for alignment.

This fixes a bug on x86_64 where rip-relative loads to sse registers could cause a segfault, as functions weren't always guaranteed to be aligned to 16-byte addresses.

Fixes #4812
2022-08-31 14:41:44 -07:00
Nick Fitzgerald
f18a1f1488 Cranelift: Deduplicate ABI signatures during lowering (#4829)
* Cranelift: Deduplicate ABI signatures during lowering

This commit creates the `SigSet` type which interns and deduplicates the ABI
signatures that we create from `ir::Signature`s. The ABI signatures are now
referred to indirectly via a `Sig` (which is a `cranelift_entity` ID), and we
pass around a `SigSet` to anything that needs to access the actual underlying
`SigData` (which is what `ABISig` used to be).

I had to change a couple methods to return a `SmallInstVec` instead of emitting
directly to work around what would otherwise be shared and exclusive borrows of
the lowering context overlapping. I don't expect any of these to heap allocate
in practice.

This does not remove the often-unnecessary allocations caused by
`ensure_struct_return_ptr_is_returned`. That is left for follow up work.

This also opens the door for further shuffling of signature data into more
efficient representations in the future, now that we have `SigSet` to store it
all in one place and it is threaded through all the code. We could potentially
move each signature's parameter and return vectors into one big vector shared
between all signatures, for example, which could cut down on allocations and
shrink the size of `SigData` since those `SmallVec`s have pretty large inline
capacity.

Overall, this refactoring gives a 1-7% speedup for compilation on
`pulldown-cmark`:

```
compilation :: cycles :: benchmarks/pulldown-cmark/benchmark.wasm

  Δ = 8754213.66 ± 7526266.23 (confidence = 99%)

  dedupe.so is 1.01x to 1.07x faster than main.so!

  [191003295 234620642.20 280597986] dedupe.so
  [197626699 243374855.86 321816763] main.so

compilation :: cycles :: benchmarks/bz2/benchmark.wasm

  No difference in performance.

  [170406200 194299792.68 253001201] dedupe.so
  [172071888 193230743.11 223608329] main.so

compilation :: cycles :: benchmarks/spidermonkey/benchmark.wasm

  No difference in performance.

  [3870997347 4437735062.59 5216007266] dedupe.so
  [4019924063 4424595349.24 4965088931] main.so
```

* Use full path instead of import to avoid warnings in some build configurations

Warnings will then cause CI to fail.

* Move `SigSet` into `VCode`
2022-08-31 20:39:32 +00:00
Nick Fitzgerald
f0c60f46a8 Cranelift: Remove ABICallee trait (#4701)
* Cranelift: Remove `ABICallee` trait

It has only one implementation: the `ABICalleeImpl` struct. By using that
directly we can avoid unnecessary layers of generics and abstractions as well as
a couple `Box`es that were previously putting the single implementation into a
`Box<dyn>`.

* Cranelift: Rename `ABICalleeImpl` to `AbiCallee`

* Fix comments as per review

* Rename `AbiCallee` to `Callee`
2022-08-15 18:27:05 +00:00
Benjamin Bouvier
8a9b1a9025 Implement an incremental compilation cache for Cranelift (#4551)
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. 

After the suggestion of Chris, `Function` has been split into mostly two parts:

- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.

Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:

- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
  - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
  - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.

The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.

A basic fuzz target has been introduced that tries to do the bare minimum:

- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
  - This last check is less efficient and less likely to happen, so probably should be rethought a bit.

Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.

Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. 

Fixes #4155.
2022-08-12 16:47:43 +00:00
Chris Fallin
863659e04f VCode emission: account for RA spill/reload/moves in worst-case block size. (#4644)
To determine whether we need to insert a "veneer island" of
branch-range extension veneers, we need to know ahead of emitting a
basic block the worst-case size of that block. This is because veneers
only go between blocks (we could plop one in the middle of a block but
that would require another jump around it and would probably pessimize
some code significantly), and we can't back up once we emit a block.

To compute this worst-case size, we take the number of instructions
and multiply by the largest possible size of one pseudoinst (e.g., on
aarch64, this is 44 bytes; it explicitly excludes the `EmitIsland`
pseudo-op which is used before large jumptable inline offset tables
are emitted). This is conservative, but it always works, and veneers
are somewhat rare in practice (function body >1MiB on aarch64 for
example).

Unfortunately this logic didn't account for the spill/reload/move
instructions inserted by the register allocator, and in one example in
issue #4629, a block had only one instruction but 482
edge-moves (!). This came at just the wrong time as we were
approaching the 1MiB limit on aarch64.

This PR fixes that issue, and fixes the logic to actually look at the
correct next block (next in `final_order` rather than numerically
next), as a bonus correctness fix.

Fixes #4629.
2022-08-08 13:57:18 -07:00
Benjamin Bouvier
8d0224341c cranelift: Introduce a feature to enable trace logs (#4484)
* Don't use `log::trace` directly but a feature-enabled `trace` macro
* Don't emit disassembly based on the log level
2022-08-01 11:19:15 +02:00
Alex Crichton
2127c3a369 Fix CI for main (#4486)
* Skip new `table_ops` test under emulation

When emulating we already have to disable most pooling-allocator related
tests so this commit carries over that logic to the new fuzz test which
may run some configurations with the pooling allocator depending on the
random input.

* Fix panics in s390x codegen related to aliases

This commit fixes an issue introduced as part of the fix for
GHSA-5fhj-g3p3-pq9g. The `reftyped_vregs` list given to `regalloc2` is
not allowed to have duplicates in it and while the list originally
doesn't have duplicates once aliases are applied the list may have
duplicates. The fix here is to perform another pass to remove duplicates
after the aliases have been processed.
2022-07-20 21:39:59 +00:00
Alex Crichton
2154c63de9 Merge pull request from GHSA-5fhj-g3p3-pq9g
* Improve cranelift disassembly of stack maps

Print out extra information about stack maps such as their contents and
other related metadata available. Additionally also print out addresses
in hex to line up with the disassembly otherwise printed as well.

* Improve the `table_ops` fuzzer

* Generate more instructions by default
* Fix negative indices appearing in `table.{get,set}`
* Assert that the traps generated are expected to prevent accidental
  other errors reporting a fuzzing success.

* Fix `reftype_vregs` reported to `regalloc2`

This fixes a mistake in the register allocation of Cranelift functions
where functions using reference-typed arguments incorrectly report which
virtual registers are reference-typed values if there are vreg aliases
in play. The fix here is to apply the vreg aliases to the final list of
reftyped regs which is eventually passed to `regalloc2`.

The main consequence of this fix is that functions which previously
accidentally didn't have correct stack maps should now have the missing
stack maps.

* Add a test that `table_ops` gc's eventually

* Add a comment about new alias resolution

* Update crates/fuzzing/src/oracles.rs

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>

* Add some comments

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
2022-07-20 11:52:23 -05:00
Sam Parker
9c43749dfe [RFC] Dynamic Vector Support (#4200)
Introduce a new concept in the IR that allows a producer to create
dynamic vector types. An IR function can now contain global value(s)
that represent a dynamic scaling factor, for a given fixed-width
vector type. A dynamic type is then created by 'multiplying' the
corresponding global value with a fixed-width type. These new types
can be used just like the existing types and the type system has a
set of hard-coded dynamic types, such as I32X4XN, which the user
defined types map onto. The dynamic types are also used explicitly
to create dynamic stack slots, which have no set size like their
existing counterparts. New IR instructions are added to access these
new stack entities.

Currently, during codegen, the dynamic scaling factor has to be
lowered to a constant so the dynamic slots do eventually have a
compile-time known size, as do spill slots.

The current lowering for aarch64 just targets Neon, using a dynamic
scale of 1.

Copyright (c) 2022, Arm Limited.
2022-07-07 12:54:39 -07:00
Chris Fallin
b2e28b917a Cranelift: update to latest regalloc2: (#4324)
- Handle call instructions' clobbers with the clobbers API, using RA2's
  clobbers bitmask (bytecodealliance/regalloc2#58) rather than clobbers
  list;

- Pull in changes from bytecodealliance/regalloc2#59 for much more sane
  edge-case behavior w.r.t. liverange splitting.
2022-06-28 09:01:59 -07:00
Chris Fallin
eb435f3057 x64: use constant pool for u64 constants rather than movabs. (#4088)
* Allow emitting u64 constants into constant pool.

* Use constant pool for constants on x64 that do not fit in a simm32 and are needed as a RegMem or RegMemImm.

* Fix rip-relative addressing bug in pinsrd emission.
2022-05-10 09:21:05 -07:00
Chris Fallin
5774e068b7 Cranelift: fix regalloc2 integration bug wrt blockparam branch args. (#4042)
Previously, the block successor accumulation and the blockparam branch
arg setup were decoupled. The lowering backend implicitly specified
the order of successor edges via its `MachTerminator` enum on the last
instruction in the block, while the `Lower` toplevel
machine-independent driver set up blockparam branch args in the edge
order seen in CLIF.

In some cases, these orders did not match -- for example, when the
conditional branch depended on an FP condition that was implemented by
swapping taken/not-taken edges and inverting the condition code.

This PR refactors the successor handling to be centralized in `Lower`
rather than flow through the terminator `MachInst`, and adds a
successor block and its blockparam args at the same time, ensuring the
orders match.
2022-04-18 09:53:57 -07:00
Chris Fallin
a0318f36f0 Switch Cranelift over to regalloc2. (#3989)
This PR switches Cranelift over to the new register allocator, regalloc2.

See [this document](https://gist.github.com/cfallin/08553421a91f150254fe878f67301801)
for a summary of the design changes. This switchover has implications for
core VCode/MachInst types and the lowering pass.

Overall, this change brings improvements to both compile time and speed of
generated code (runtime), as reported in #3942:

```
Benchmark       Compilation (wallclock)     Execution (wallclock)
blake3-scalar   25% faster                  28% faster
blake3-simd     no diff                     no diff
meshoptimizer   19% faster                  17% faster
pulldown-cmark  17% faster                  no diff
bz2             15% faster                  no diff
SpiderMonkey,   21% faster                  2% faster
  fib(30)
clang.wasm      42% faster                  N/A
```
2022-04-14 10:28:21 -07:00
Chris Fallin
666c2554ea Merge pull request from GHSA-gwc9-348x-qwv2
* Run the GC smoketest with epoch support enabled as well.

* Handle safepoints in cold blocks properly.

Currently, the way that we find safepoint slots for a given instruction
relies on the instruction index order in the safepoint list matching the
order of instruction emission.

Previous to the introduction of cold-block support, this was trivially
satisfied by sorting the safepoint list: we emit instructions 0, 1, 2,
3, 4, ..., and so if we have safepoints at instructions 1 and 4, we will
encounter them in that order.

However, cold blocks are supported by swizzling the emission order at
the last moment (to avoid having to renumber instructions partway
through the compilation pipeline), so we actually emit instructions out
of index order when cold blocks are present.

Reference-type support in Wasm in particular uses cold blocks for
slowpaths, and has live refs and safepoints in these slowpaths, so we
can reliably "skip" a safepoint (not emit any metadata for it) in the
presence of reftype usage.

This PR fixes the emission code by building a map from instruction index
to safepoint index first, then doing lookups through this map, rather
than following along in-order as it emits instructions.
2022-03-31 14:26:01 -07:00
Chris Fallin
d9d6469422 Cranelift: fix debuginfo wrt cold blocks and non-monotonic layout.
The debuginfo analyses are written with the assumption that the order of
instructions in the VCode is the order of instructions in the final
machine ocde. This was previously a strong invariant, until we
introduced support for cold blocks. Cold blocks are implemented by
reordering during emission, because the VCode ordering has other
requirements related to lowering (respecting def-use dependencies in the
reverse pass), so it is much simpler to reorder instructions at the last
moment. Unfortunately, this causes the breakage we now see.

This commit fixes the issue by skipping all cold instructions when
emitting value-label ranges (which are translated into debuginfo). This
means that variables defined in cold blocks will not have DWARF
metadata. But cold blocks are usually compiler-inserted slowpaths, not
user code, so this is probably OK. Debuginfo is always best-effort, so
in any case this does not violate any correctness constraints.
2022-02-04 23:15:04 -08:00
Chris Fallin
ef1b2d2fa8 Cranelift: Fix cold-blocks-related lowering bug.
If a block is marked cold but has side-effect-free code that is only
used by side-effectful code in non-cold blocks, we will erroneously fail
to emit it, causing a regalloc failure.

This is due to the interaction of block ordering and lowering: we rely
on block ordering to visit uses before defs (except for backedges) so
that we can effectively do an inline liveness analysis and skip lowering
operations that are not used anywhere. This "inline DCE" is needed
because instruction lowering can pattern-match and merge one instruction
into another, removing the need to generate the source instruction.

Unfortunately, the way that I added cold-block support in #3698 was
oblivious to this -- it just changed the block sort order. For
efficiency reasons, we generate code in its final order directly, so it
would not be tenable to generate it in e.g. RPO first and then reorder
cold blocks to the bottom; we really do want to visit in the same order
as the final code.

This PR fixes the bug by moving the point at which cold blocks are sunk
to emission-time instead. This is cheaper than either trying to visit
blocks during lowering in RPO but add to VCode out-of-order, or trying
to do some expensive analysis to recover proper liveness. It's not clear
that the latter would be possible anyway -- the need to lower some
instructions depends on other instructions' isel results/merging
success, so we really do need to visit in RPO, and we can't simply lower
all instructions as side-effecting roots (some can't be toplevel nodes).

The one downside of this approach is that the VCode itself still has
cold blocks inline; so in the text format (and hence compile-tests) it's
not possible to see the sinking. This PR adds a test for cold-block
sinking that actually verifies the machine code. (The test also includes
an add-instruction in the cold path that would have been incorrectly
skipped prior to this fix.)

Fortunately this bug would not have been triggered by the one current
use of cold blocks in #3699, because there the only operation in the
cold block was an (always effectful) call instruction. The worst-case
effect of the bug in other code would be a regalloc panic; no silent
miscompilations could result.
2022-01-21 10:47:49 -08:00
Chris Fallin
833ebeed76 Fix spillslot size bug in SIMD by removing type-dependent spillslot allocation.
This patch makes spillslot allocation, spilling and reloading all based
on register class only. Hence when we have a 32- or 64-bit value in a
128-bit XMM register on x86-64 or vector register on aarch64, this
results in larger spillslots and spills/restores.

Why make this change, if it results in less efficient stack-frame usage?
Simply put, it is safer: there is always a risk when allocating
spillslots or spilling/reloading that we get the wrong type and make the
spillslot or the store/load too small. This was one contributing factor
to CVE-2021-32629, and is now the source of a fuzzbug in SIMD code that
puns an arbitrary user-controlled vector constant over another
stackslot. (If this were a pointer, that could result in RCE. SIMD is
not yet on by default in a release, fortunately.

In particular, we have not been particularly careful about using moves
between values of different types, for example with `raw_bitcast` or
with certain SIMD operations, and such moves indicate to regalloc.rs
that vregs are in equivalence classes and some arbitrary vreg in the
class is provided when allocating the spillslot or spilling/reloading.
Since regalloc.rs does not track actual type, and since we haven't been
careful about moves, we can't really trust this "arbitrary vreg in
equivalence class" to provide accurate type information.

In the fix to CVE-2021-32629 we fixed this for integer registers by
always spilling/reloading 64 bits; this fix can be seen as the analogous
change for FP/vector regs.
2022-01-04 13:24:40 -08:00
Alex Crichton
1532516a36 Use relative call instructions between wasm functions (#3275)
* Use relative `call` instructions between wasm functions

This commit is a relatively major change to the way that Wasmtime
generates code for Wasm modules and how functions call each other.
Prior to this commit all function calls between functions, even if they
were defined in the same module, were done indirectly through a
register. To implement this the backend would emit an absolute 8-byte
relocation near all function calls, load that address into a register,
and then call it. While this technique is simple to implement and easy
to get right, it has two primary downsides associated with it:

* Function calls are always indirect which means they are more difficult
  to predict, resulting in worse performance.

* Generating a relocation-per-function call requires expensive
  relocation resolution at module-load time, which can be a large
  contributing factor to how long it takes to load a precompiled module.

To fix these issues, while also somewhat compromising on the previously
simple implementation technique, this commit switches wasm calls within
a module to using the `colocated` flag enabled in Cranelift-speak, which
basically means that a relative call instruction is used with a
relocation that's resolved relative to the pc of the call instruction
itself.

When switching the `colocated` flag to `true` this commit is also then
able to move much of the relocation resolution from `wasmtime_jit::link`
into `wasmtime_cranelift::obj` during object-construction time. This
frontloads all relocation work which means that there's actually no
relocations related to function calls in the final image, solving both
of our points above.

The main gotcha in implementing this technique is that there are
hardware limitations to relative function calls which mean we can't
simply blindly use them. AArch64, for example, can only go +/- 64 MB
from the `bl` instruction to the target, which means that if the
function we're calling is a greater distance away then we would fail to
resolve that relocation. On x86_64 the limits are +/- 2GB which are much
larger, but theoretically still feasible to hit. Consequently the main
increase in implementation complexity is fixing this issue.

This issue is actually already present in Cranelift itself, and is
internally one of the invariants handled by the `MachBuffer` type. When
generating a function relative jumps between basic blocks have similar
restrictions. This commit adds new methods for the `MachBackend` trait
and updates the implementation of `MachBuffer` to account for all these
new branches. Specifically the changes to `MachBuffer` are:

* For AAarch64 the `LabelUse::Branch26` value now supports veneers, and
  AArch64 calls use this to resolve relocations.

* The `emit_island` function has been rewritten internally to handle
  some cases which previously didn't come up before, such as:

  * When emitting an island the deadline is now recalculated, where
    previously it was always set to infinitely in the future. This was ok
    prior since only a `Branch19` supported veneers and once it was
    promoted no veneers were supported, so without multiple layers of
    promotion the lack of a new deadline was ok.

  * When emitting an island all pending fixups had veneers forced if
    their branch target wasn't known yet. This was generally ok for
    19-bit fixups since the only kind getting a veneer was a 19-bit
    fixup, but with mixed kinds it's a bit odd to force veneers for a
    26-bit fixup just because a nearby 19-bit fixup needed a veneer.
    Instead fixups are now re-enqueued unless they're known to be
    out-of-bounds. This may run the risk of generating more islands for
    19-bit branches but it should also reduce the number of islands for
    between-function calls.

  * Otherwise the internal logic was tweaked to ideally be a bit more
    simple, but that's a pretty subjective criteria in compilers...

I've added some simple testing of this for now. A synthetic compiler
option was create to simply add padded 0s between functions and test
cases implement various forms of calls that at least need veneers. A
test is also included for x86_64, but it is unfortunately pretty slow
because it requires generating 2GB of output. I'm hoping for now it's
not too bad, but we can disable the test if it's prohibitive and
otherwise just comment the necessary portions to be sure to run the
ignored test if these parts of the code have changed.

The final end-result of this commit is that for a large module I'm
working with the number of relocations dropped to zero, meaning that
nothing actually needs to be done to the text section when it's loaded
into memory (yay!). I haven't run final benchmarks yet but this is the
last remaining source of significant slowdown when loading modules,
after I land a number of other PRs both active and ones that I only have
locally for now.

* Fix arm32

* Review comments
2021-09-01 13:27:38 -05:00
Benjamin Bouvier
91c65d739f Remove unused code in machinst 2021-07-02 18:09:33 +02:00
Chris Fallin
800cf25bb5 Make the CFG metadata computation conditional on a flag. 2021-05-24 13:01:15 -07:00
Chris Fallin
11a2ef01e7 Provide BB layout info externally in terms of code offsets.
This is sometimes useful when performing analyses on the generated
machine code: for example, some kinds of code verifiers will want to do
a control-flow analysis, and it is much easier to do this if one does
not have to recover the CFG from the machine code (doing so requires
heavyweight analysis when indirect branches are involved). If one trusts
the control-flow lowering and only needs to verify other properties of
the code, this can be very useful.
2021-05-24 09:18:06 -07:00
Chris Fallin
2d5db92a9e Rework/simplify unwind infrastructure and implement Windows unwind.
Our previous implementation of unwind infrastructure was somewhat
complex and brittle: it parsed generated instructions in order to
reverse-engineer unwind info from prologues. It also relied on some
fragile linkage to communicate instruction-layout information that VCode
was not designed to provide.

A much simpler, more reliable, and easier-to-reason-about approach is to
embed unwind directives as pseudo-instructions in the prologue as we
generate it. That way, we can say what we mean and just emit it
directly.

The usual reasoning that leads to the reverse-engineering approach is
that metadata is hard to keep in sync across optimization passes; but
here, (i) prologues are generated at the very end of the pipeline, and
(ii) if we ever do a post-prologue-gen optimization, we can treat unwind
directives as black boxes with unknown side-effects, just as we do for
some other pseudo-instructions today.

It turns out that it was easier to just build this for both x64 and
aarch64 (since they share a factored-out ABI implementation), and wire
up the platform-specific unwind-info generation for Windows and SystemV.
Now we have simpler unwind on all platforms and we can delete the old
unwind infra as soon as we remove the old backend.

There were a few consequences to supporting Fastcall unwind in
particular that led to a refactor of the common ABI. Windows only
supports naming clobbered-register save locations within 240 bytes of
the frame-pointer register, whatever one chooses that to be (RSP or
RBP). We had previously saved clobbers below the fixed frame (and below
nominal-SP). The 240-byte range has to include the old RBP too, so we're
forced to place clobbers at the top of the frame, just below saved
RBP/RIP. This is fine; we always keep a frame pointer anyway because we
use it to refer to stack args. It does mean that offsets of fixed-frame
slots (spillslots, stackslots) from RBP are no longer known before we do
regalloc, so if we ever want to index these off of RBP rather than
nominal-SP because we add support for `alloca` (dynamic frame growth),
then we'll need a "nominal-BP" mode that is resolved after regalloc and
clobber-save code is generated. I added a comment to this effect in
`abi_impl.rs`.

The above refactor touched both x64 and aarch64 because of shared code.
This had a further effect in that the old aarch64 prologue generation
subtracted from `sp` once to allocate space, then used stores to `[sp,
offset]` to save clobbers. Unfortunately the offset only has 7-bit
range, so if there are enough clobbered registers (and there can be --
aarch64 has 384 bytes of registers; at least one unit test hits this)
the stores/loads will be out-of-range. I really don't want to synthesize
large-offset sequences here; better to go back to the simpler
pre-index/post-index `stp r1, r2, [sp, #-16]` form that works just like
a "push". It's likely not much worse microarchitecturally (dependence
chain on SP, but oh well) and it actually saves an instruction if
there's no other frame to allocate. As a further advantage, it's much
simpler to understand; simpler is usually better.

This PR adds the new backend on Windows to CI as well.
2021-03-11 20:03:52 -08:00
bjorn3
602006ff9d Fix build_value_labels_ranges for newBE when there are no labels 2021-02-04 11:46:20 +01:00
bjorn3
76d615049d Make the stackslot offsets available for debuginfo 2021-02-03 17:48:52 +01:00
Kasey Carrothers
99be82c866 Replace MachInst::gen_zero_len_nop with gen_nop(0) 2021-01-29 01:15:08 -08:00
Chris Fallin
997fab55d5 Skip value-label analysis if no value labels are present. 2021-01-21 15:59:52 -08:00
Chris Fallin
c84d6be6f4 Detailed debug-info (DWARF) support in new backends (initially x64).
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:

- Translate value-label metadata on the input into "value_label"
  pseudo-instructions when lowering into VCode. These
  pseudo-instructions take a register as input, denote a value label,
  and semantically are like a "move into value label" -- i.e., they
  update the current value (as seen by debugging tools) of the given
  local. These pseudo-instructions emit no machine code.

- Perform a dataflow analysis *at the machine-code level*, tracking
  value-labels that propagate into registers and into [SP+constant]
  stack storage. This is a forward dataflow fixpoint analysis where each
  storage location can contain a *set* of value labels, and each value
  label can reside in a *set* of storage locations. (Meet function is
  pairwise intersection by storage location.)

  This analysis traces value labels symbolically through loads and
  stores and reg-to-reg moves, so it will naturally handle spills and
  reloads without knowing anything special about them.

- When this analysis converges, we have, at each machine-code offset, a
  mapping from value labels to some number of storage locations; for
  each offset for each label, we choose the best location (prefer
  registers). Note that we can choose any location, as the symbolic
  dataflow analysis is sound and guarantees that the value at the
  value_label instruction propagates to all of the named locations.

- Then we can convert this mapping into a format that the DWARF
  generation code (wasmtime's debug crate) can use.

This PR also adds the new-backend variant to the gdb tests on CI.
2021-01-21 15:59:49 -08:00
Chris Fallin
5e5e520654 Remove size-of-struct asserts that break with some Rust versions.
The asserts on the sizes of the VCode constant-table data structures
introduced in PR #2328 are dependent on the size of data structures such
as `HashMap` in the standard library, which can change. In particular,
on Rust 1.46 (which is not current, but could be e.g. pinned by a
project using Cranelift), it appears that these asserts fail. We
shouldn't depend on stdlib internals; IMHO the asserts on our own struct
sizes are enough to catch accidental size blowups.
2020-11-11 17:13:28 -08:00
Chris Fallin
4dce51096d MachInst backends: handle SourceLocs out-of-band, not in Insts.
In existing MachInst backends, many instructions -- any that can trap or
result in a relocation -- carry `SourceLoc` values in order to propagate
the location-in-original-source to use to describe resulting traps or
relocation errors.

This is quite tedious, and also error-prone: it is likely that the
necessary plumbing will be missed in some cases, and in any case, it's
unnecessarily verbose.

This PR factors out the `SourceLoc` handling so that it is tracked
during emission as part of the `EmitState`, and plumbed through
automatically by the machine-independent framework. Instruction emission
code that directly emits trap or relocation records can query the
current location as necessary. Then we only need to ensure that memory
references and trap instructions, at their (one) emission point rather
than their (many) lowering/generation points, are wired up correctly.

This does have the side-effect that some loads and stores that do not
correspond directly to user code's heap accesses will have unnecessary
but harmless trap metadata. For example, the load that fetches a code
offset from a jump table will have a 'heap out of bounds' trap record
attached to it; but because it is bounds-checked, and will never
actually trap if the lowering is correct, this should be harmless.  The
simplicity improvement here seemed more worthwhile to me than plumbing
through a "corresponds to user-level load/store" bit, because the latter
is a bit complex when we allow for op merging.

Closes #2290: though it does not implement a full "metadata" scheme as
described in that issue, this seems simpler overall.
2020-11-10 15:46:53 -08:00
Yury Delendik
f60c0f3ec3 cranelift: refactor unwind logic to accommodate multiple backends (#2357)
*    Make cranelift_codegen::isa::unwind::input public
*    Move UnwindCode's common offset field out of the structure
*    Make MachCompileResult::unwind_info more generic
*    Record initial stack pointer offset
2020-11-05 16:57:40 -06:00
Andrew Brown
83f182b390 Implement initial emission of constants
This approach suffers from memory-size bloat during compile time due to the desire to de-duplicate the constants emitted and reduce runtime memory-size. As a first step, though, this provides an end-to-end mechanism for constants to be emitted in the MachBuffer islands.
2020-11-05 14:25:02 -08:00
Yury Delendik
de4af90af6 machinst x64: New backend unwind (#2266)
Addresses unwind for experimental x64 backend. The preliminary code enables backtrace on SystemV call convension.
2020-10-23 15:19:41 -05:00
Benjamin Bouvier
c5bbc87498 machinst: allow passing constant information to the instruction emitter;
A new associated type Info is added to MachInstEmit, which is the
immutable counterpart to State. It can't easily be constructed from an
ABICallee, since it would require adding an associated type to the
latter, and making so leaks the associated type in a lot of places in
the code base and makes the code harder to read. Instead, the EmitInfo
state can simply be passed to the `Vcode::emit` function directly.
2020-10-08 09:21:51 +02:00
Chris Fallin
71768bb6cf Fix AArch64 ABI to respect half-caller-save, half-callee-save vec regs.
This PR updates the AArch64 ABI implementation so that it (i) properly
respects that v8-v15 inclusive have callee-save lower halves, and
caller-save upper halves, by conservatively approximating (to full
registers) in the appropriate directions when generating prologue
caller-saves and when informing the regalloc of clobbered regs across
callsites.

In order to prevent saving all of these vector registers in the prologue
of every non-leaf function due to the above approximation, this also
makes use of a new regalloc.rs feature to exclude call instructions'
writes from the clobber set returned by register allocation. This is
safe whenever the caller and callee have the same ABI (because anything
the callee could clobber, the caller is allowed to clobber as well
without saving it in the prologue).

Fixes #2254.
2020-10-06 14:44:02 -07:00
Chris Fallin
e8f772c1ac x64 new backend: port ABI implementation to shared infrastructure with AArch64.
Previously, in #2128, we factored out a common "vanilla 64-bit ABI"
implementation from the AArch64 ABI code, with the idea that this should
be largely compatible with x64. This PR alters the new x64 backend to
make use of the shared infrastructure, removing the duplication that
existed previously. The generated code is nearly (not exactly) the same;
the only difference relates to how the clobber-save region is padded in
the prologue.

This also changes some register allocations in the aarch64 code because
call support in the shared ABI infra now passes a temp vreg in, rather
than requiring use of a fixed, non-allocable temp; tests have been
updated, and the runtime behavior is unchanged.
2020-09-08 17:59:01 -07:00
Nick Fitzgerald
05bf9ea3f3 Rename "Stackmap" to "StackMap"
And "stackmap" to "stack_map".

This commit is purely mechanical.
2020-08-07 10:08:44 -07:00
Chris Fallin
2b9fefe89a Add timing for several new-backend stages.
This PR adds a bit more granularity to the output of e.g. `clif-util
compile -T`, indicating how much time is spent in VCode lowering and
various other new-backend-specific tasks.
2020-07-23 09:54:39 -07:00
Chris Fallin
26529006e0 Address review comments. 2020-07-14 10:17:29 -07:00
Chris Fallin
08353fcc14 Reftypes part two: add support for stackmaps.
This commit adds support for generating stackmaps at safepoints to the
new backend framework and to the AArch64 backend in particular. It has
been tested to work with SpiderMonkey.
2020-07-14 10:17:27 -07:00
Benjamin Bouvier
ef5de04d32 machinst/x64: teach regalloc what FP instructions are moves;
and cosmetic changes after #1665 landed.
2020-06-15 16:39:08 +02:00
Johnnie Birch
48f0b10c7a Add initial scalar FP operations (addss, subss, etc) to x64 backend.
Adds support for addss and subss. This is the first lowering for
sse floating point alu and some move operations. The changes here do
some renaming of data structures and adds a couple of new ones
to support sse specific operations. The work done here will likely
evolve as needed to support an efficient, inituative, and consistent
framework.
2020-06-10 18:36:57 +02:00