Files
wasmtime/cranelift/codegen/src/machinst/vcode.rs
Johnnie Birch 48f0b10c7a Add initial scalar FP operations (addss, subss, etc) to x64 backend.
Adds support for addss and subss. This is the first lowering for
sse floating point alu and some move operations. The changes here do
some renaming of data structures and adds a couple of new ones
to support sse specific operations. The work done here will likely
evolve as needed to support an efficient, inituative, and consistent
framework.
2020-06-10 18:36:57 +02:00

573 lines
20 KiB
Rust

//! This implements the VCode container: a CFG of Insts that have been lowered.
//!
//! VCode is virtual-register code. An instruction in VCode is almost a machine
//! instruction; however, its register slots can refer to virtual registers in
//! addition to real machine registers.
//!
//! VCode is structured with traditional basic blocks, and
//! each block must be terminated by an unconditional branch (one target), a
//! conditional branch (two targets), or a return (no targets). Note that this
//! slightly differs from the machine code of most ISAs: in most ISAs, a
//! conditional branch has one target (and the not-taken case falls through).
//! However, we expect that machine backends will elide branches to the following
//! block (i.e., zero-offset jumps), and will be able to codegen a branch-cond /
//! branch-uncond pair if *both* targets are not fallthrough. This allows us to
//! play with layout prior to final binary emission, as well, if we want.
//!
//! See the main module comment in `mod.rs` for more details on the VCode-based
//! backend pipeline.
use crate::ir::{self, SourceLoc};
use crate::machinst::*;
use crate::settings;
use regalloc::Function as RegallocFunction;
use regalloc::Set as RegallocSet;
use regalloc::{
BlockIx, InstIx, Range, RegAllocResult, RegClass, RegUsageCollector, RegUsageMapper,
};
use alloc::boxed::Box;
use alloc::{borrow::Cow, vec::Vec};
use std::fmt;
use std::iter;
use std::string::String;
/// Index referring to an instruction in VCode.
pub type InsnIndex = u32;
/// Index referring to a basic block in VCode.
pub type BlockIndex = u32;
/// VCodeInst wraps all requirements for a MachInst to be in VCode: it must be
/// a `MachInst` and it must be able to emit itself at least to a `SizeCodeSink`.
pub trait VCodeInst: MachInst + MachInstEmit {}
impl<I: MachInst + MachInstEmit> VCodeInst for I {}
/// A function in "VCode" (virtualized-register code) form, after lowering.
/// This is essentially a standard CFG of basic blocks, where each basic block
/// consists of lowered instructions produced by the machine-specific backend.
pub struct VCode<I: VCodeInst> {
/// Function liveins.
liveins: RegallocSet<RealReg>,
/// Function liveouts.
liveouts: RegallocSet<RealReg>,
/// VReg IR-level types.
vreg_types: Vec<Type>,
/// Lowered machine instructions in order corresponding to the original IR.
insts: Vec<I>,
/// Source locations for each instruction. (`SourceLoc` is a `u32`, so it is
/// reasonable to keep one of these per instruction.)
srclocs: Vec<SourceLoc>,
/// Entry block.
entry: BlockIndex,
/// Block instruction indices.
block_ranges: Vec<(InsnIndex, InsnIndex)>,
/// Block successors: index range in the successor-list below.
block_succ_range: Vec<(usize, usize)>,
/// Block successor lists, concatenated into one Vec. The `block_succ_range`
/// list of tuples above gives (start, end) ranges within this list that
/// correspond to each basic block's successors.
block_succs: Vec<BlockIx>,
/// Block-order information.
block_order: BlockLoweringOrder,
/// ABI object.
abi: Box<dyn ABIBody<I = I>>,
}
/// A builder for a VCode function body. This builder is designed for the
/// lowering approach that we take: we traverse basic blocks in forward
/// (original IR) order, but within each basic block, we generate code from
/// bottom to top; and within each IR instruction that we visit in this reverse
/// order, we emit machine instructions in *forward* order again.
///
/// Hence, to produce the final instructions in proper order, we perform two
/// swaps. First, the machine instructions (`I` instances) are produced in
/// forward order for an individual IR instruction. Then these are *reversed*
/// and concatenated to `bb_insns` at the end of the IR instruction lowering.
/// The `bb_insns` vec will thus contain all machine instructions for a basic
/// block, in reverse order. Finally, when we're done with a basic block, we
/// reverse the whole block's vec of instructions again, and concatenate onto
/// the VCode's insts.
pub struct VCodeBuilder<I: VCodeInst> {
/// In-progress VCode.
vcode: VCode<I>,
/// Index of the last block-start in the vcode.
block_start: InsnIndex,
/// Start of succs for the current block in the concatenated succs list.
succ_start: usize,
/// Current source location.
cur_srcloc: SourceLoc,
}
impl<I: VCodeInst> VCodeBuilder<I> {
/// Create a new VCodeBuilder.
pub fn new(abi: Box<dyn ABIBody<I = I>>, block_order: BlockLoweringOrder) -> VCodeBuilder<I> {
let vcode = VCode::new(abi, block_order);
VCodeBuilder {
vcode,
block_start: 0,
succ_start: 0,
cur_srcloc: SourceLoc::default(),
}
}
/// Access the ABI object.
pub fn abi(&mut self) -> &mut dyn ABIBody<I = I> {
&mut *self.vcode.abi
}
/// Access to the BlockLoweringOrder object.
pub fn block_order(&self) -> &BlockLoweringOrder {
&self.vcode.block_order
}
/// Set the type of a VReg.
pub fn set_vreg_type(&mut self, vreg: VirtualReg, ty: Type) {
if self.vcode.vreg_types.len() <= vreg.get_index() {
self.vcode.vreg_types.resize(
self.vcode.vreg_types.len()
+ ((vreg.get_index() + 1) - self.vcode.vreg_types.len()),
ir::types::I8,
)
}
self.vcode.vreg_types[vreg.get_index()] = ty;
}
/// Set the current block as the entry block.
pub fn set_entry(&mut self, block: BlockIndex) {
self.vcode.entry = block;
}
/// End the current basic block. Must be called after emitting vcode insts
/// for IR insts and prior to ending the function (building the VCode).
pub fn end_bb(&mut self) {
let start_idx = self.block_start;
let end_idx = self.vcode.insts.len() as InsnIndex;
self.block_start = end_idx;
// Add the instruction index range to the list of blocks.
self.vcode.block_ranges.push((start_idx, end_idx));
// End the successors list.
let succ_end = self.vcode.block_succs.len();
self.vcode
.block_succ_range
.push((self.succ_start, succ_end));
self.succ_start = succ_end;
}
/// Push an instruction for the current BB and current IR inst within the BB.
pub fn push(&mut self, insn: I) {
match insn.is_term() {
MachTerminator::None | MachTerminator::Ret => {}
MachTerminator::Uncond(target) => {
self.vcode.block_succs.push(BlockIx::new(target.get()));
}
MachTerminator::Cond(true_branch, false_branch) => {
self.vcode.block_succs.push(BlockIx::new(true_branch.get()));
self.vcode
.block_succs
.push(BlockIx::new(false_branch.get()));
}
MachTerminator::Indirect(targets) => {
for target in targets {
self.vcode.block_succs.push(BlockIx::new(target.get()));
}
}
}
self.vcode.insts.push(insn);
self.vcode.srclocs.push(self.cur_srcloc);
}
/// Get the current source location.
pub fn get_srcloc(&self) -> SourceLoc {
self.cur_srcloc
}
/// Set the current source location.
pub fn set_srcloc(&mut self, srcloc: SourceLoc) {
self.cur_srcloc = srcloc;
}
/// Build the final VCode.
pub fn build(self) -> VCode<I> {
self.vcode
}
}
fn block_ranges(indices: &[InstIx], len: usize) -> Vec<(usize, usize)> {
let v = indices
.iter()
.map(|iix| iix.get() as usize)
.chain(iter::once(len))
.collect::<Vec<usize>>();
v.windows(2).map(|p| (p[0], p[1])).collect()
}
fn is_redundant_move<I: VCodeInst>(insn: &I) -> bool {
if let Some((to, from)) = insn.is_move() {
to.to_reg() == from
} else {
false
}
}
impl<I: VCodeInst> VCode<I> {
/// New empty VCode.
fn new(abi: Box<dyn ABIBody<I = I>>, block_order: BlockLoweringOrder) -> VCode<I> {
VCode {
liveins: abi.liveins(),
liveouts: abi.liveouts(),
vreg_types: vec![],
insts: vec![],
srclocs: vec![],
entry: 0,
block_ranges: vec![],
block_succ_range: vec![],
block_succs: vec![],
block_order,
abi,
}
}
/// Returns the flags controlling this function's compilation.
pub fn flags(&self) -> &settings::Flags {
self.abi.flags()
}
/// Get the IR-level type of a VReg.
pub fn vreg_type(&self, vreg: VirtualReg) -> Type {
self.vreg_types[vreg.get_index()]
}
/// Get the entry block.
pub fn entry(&self) -> BlockIndex {
self.entry
}
/// Get the number of blocks. Block indices will be in the range `0 ..
/// (self.num_blocks() - 1)`.
pub fn num_blocks(&self) -> usize {
self.block_ranges.len()
}
/// Stack frame size for the full function's body.
pub fn frame_size(&self) -> u32 {
self.abi.frame_size()
}
/// Get the successors for a block.
pub fn succs(&self, block: BlockIndex) -> &[BlockIx] {
let (start, end) = self.block_succ_range[block as usize];
&self.block_succs[start..end]
}
/// Take the results of register allocation, with a sequence of
/// instructions including spliced fill/reload/move instructions, and replace
/// the VCode with them.
pub fn replace_insns_from_regalloc(&mut self, result: RegAllocResult<Self>) {
// Record the spillslot count and clobbered registers for the ABI/stack
// setup code.
self.abi.set_num_spillslots(result.num_spill_slots as usize);
self.abi
.set_clobbered(result.clobbered_registers.map(|r| Writable::from_reg(*r)));
// We want to move instructions over in final block order, using the new
// block-start map given by the regalloc.
let block_ranges: Vec<(usize, usize)> =
block_ranges(result.target_map.elems(), result.insns.len());
let mut final_insns = vec![];
let mut final_block_ranges = vec![(0, 0); self.num_blocks()];
let mut final_srclocs = vec![];
for block in 0..self.num_blocks() {
let block = block as BlockIndex;
let (start, end) = block_ranges[block as usize];
let final_start = final_insns.len() as InsnIndex;
if block == self.entry {
// Start with the prologue.
let prologue = self.abi.gen_prologue();
let len = prologue.len();
final_insns.extend(prologue.into_iter());
final_srclocs.extend(iter::repeat(SourceLoc::default()).take(len));
}
for i in start..end {
let insn = &result.insns[i];
// Elide redundant moves at this point (we only know what is
// redundant once registers are allocated).
if is_redundant_move(insn) {
continue;
}
// Is there a srcloc associated with this insn? Look it up based on original
// instruction index (if new insn corresponds to some original insn, i.e., is not
// an inserted load/spill/move).
let orig_iix = result.orig_insn_map[InstIx::new(i as u32)];
let srcloc = if orig_iix.is_invalid() {
SourceLoc::default()
} else {
self.srclocs[orig_iix.get() as usize]
};
// Whenever encountering a return instruction, replace it
// with the epilogue.
let is_ret = insn.is_term() == MachTerminator::Ret;
if is_ret {
let epilogue = self.abi.gen_epilogue();
let len = epilogue.len();
final_insns.extend(epilogue.into_iter());
final_srclocs.extend(iter::repeat(srcloc).take(len));
} else {
final_insns.push(insn.clone());
final_srclocs.push(srcloc);
}
}
let final_end = final_insns.len() as InsnIndex;
final_block_ranges[block as usize] = (final_start, final_end);
}
debug_assert!(final_insns.len() == final_srclocs.len());
self.insts = final_insns;
self.srclocs = final_srclocs;
self.block_ranges = final_block_ranges;
}
/// Emit the instructions to a `MachBuffer`, containing fixed-up code and external
/// reloc/trap/etc. records ready for use.
pub fn emit(&self) -> MachBuffer<I>
where
I: MachInstEmit,
{
let mut buffer = MachBuffer::new();
let mut state = Default::default();
buffer.reserve_labels_for_blocks(self.num_blocks() as BlockIndex); // first N MachLabels are simply block indices.
let flags = self.abi.flags();
let mut cur_srcloc = None;
for block in 0..self.num_blocks() {
let block = block as BlockIndex;
let new_offset = I::align_basic_block(buffer.cur_offset());
while new_offset > buffer.cur_offset() {
// Pad with NOPs up to the aligned block offset.
let nop = I::gen_nop((new_offset - buffer.cur_offset()) as usize);
nop.emit(&mut buffer, flags, &mut Default::default());
}
assert_eq!(buffer.cur_offset(), new_offset);
let (start, end) = self.block_ranges[block as usize];
buffer.bind_label(MachLabel::from_block(block));
for iix in start..end {
let srcloc = self.srclocs[iix as usize];
if cur_srcloc != Some(srcloc) {
if cur_srcloc.is_some() {
buffer.end_srcloc();
}
buffer.start_srcloc(srcloc);
cur_srcloc = Some(srcloc);
}
self.insts[iix as usize].emit(&mut buffer, flags, &mut state);
}
if cur_srcloc.is_some() {
buffer.end_srcloc();
cur_srcloc = None;
}
// Do we need an island? Get the worst-case size of the next BB and see if, having
// emitted that many bytes, we will be beyond the deadline.
if block < (self.num_blocks() - 1) as BlockIndex {
let next_block = block + 1;
let next_block_range = self.block_ranges[next_block as usize];
let next_block_size = next_block_range.1 - next_block_range.0;
let worst_case_next_bb = I::worst_case_size() * next_block_size;
if buffer.island_needed(worst_case_next_bb) {
buffer.emit_island();
}
}
}
buffer
}
/// Get the IR block for a BlockIndex, if one exists.
pub fn bindex_to_bb(&self, block: BlockIndex) -> Option<ir::Block> {
self.block_order.lowered_order()[block as usize].orig_block()
}
}
impl<I: VCodeInst> RegallocFunction for VCode<I> {
type Inst = I;
fn insns(&self) -> &[I] {
&self.insts[..]
}
fn insns_mut(&mut self) -> &mut [I] {
&mut self.insts[..]
}
fn get_insn(&self, insn: InstIx) -> &I {
&self.insts[insn.get() as usize]
}
fn get_insn_mut(&mut self, insn: InstIx) -> &mut I {
&mut self.insts[insn.get() as usize]
}
fn blocks(&self) -> Range<BlockIx> {
Range::new(BlockIx::new(0), self.block_ranges.len())
}
fn entry_block(&self) -> BlockIx {
BlockIx::new(self.entry)
}
fn block_insns(&self, block: BlockIx) -> Range<InstIx> {
let (start, end) = self.block_ranges[block.get() as usize];
Range::new(InstIx::new(start), (end - start) as usize)
}
fn block_succs(&self, block: BlockIx) -> Cow<[BlockIx]> {
let (start, end) = self.block_succ_range[block.get() as usize];
Cow::Borrowed(&self.block_succs[start..end])
}
fn is_ret(&self, insn: InstIx) -> bool {
match self.insts[insn.get() as usize].is_term() {
MachTerminator::Ret => true,
_ => false,
}
}
fn get_regs(insn: &I, collector: &mut RegUsageCollector) {
insn.get_regs(collector)
}
fn map_regs<RUM: RegUsageMapper>(insn: &mut I, mapper: &RUM) {
insn.map_regs(mapper);
}
fn is_move(&self, insn: &I) -> Option<(Writable<Reg>, Reg)> {
insn.is_move()
}
fn get_num_vregs(&self) -> usize {
self.vreg_types.len()
}
fn get_spillslot_size(&self, regclass: RegClass, vreg: VirtualReg) -> u32 {
let ty = self.vreg_type(vreg);
self.abi.get_spillslot_size(regclass, ty)
}
fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg, vreg: VirtualReg) -> I {
let ty = self.vreg_type(vreg);
self.abi.gen_spill(to_slot, from_reg, ty)
}
fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot, vreg: VirtualReg) -> I {
let ty = self.vreg_type(vreg);
self.abi.gen_reload(to_reg, from_slot, ty)
}
fn gen_move(&self, to_reg: Writable<RealReg>, from_reg: RealReg, vreg: VirtualReg) -> I {
let ty = self.vreg_type(vreg);
I::gen_move(to_reg.map(|r| r.to_reg()), from_reg.to_reg(), ty)
}
fn gen_zero_len_nop(&self) -> I {
I::gen_zero_len_nop()
}
fn maybe_direct_reload(&self, insn: &I, reg: VirtualReg, slot: SpillSlot) -> Option<I> {
insn.maybe_direct_reload(reg, slot)
}
fn func_liveins(&self) -> RegallocSet<RealReg> {
self.liveins.clone()
}
fn func_liveouts(&self) -> RegallocSet<RealReg> {
self.liveouts.clone()
}
}
impl<I: VCodeInst> fmt::Debug for VCode<I> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "VCode_Debug {{")?;
writeln!(f, " Entry block: {}", self.entry)?;
for block in 0..self.num_blocks() {
writeln!(f, "Block {}:", block,)?;
for succ in self.succs(block as BlockIndex) {
writeln!(f, " (successor: Block {})", succ.get())?;
}
let (start, end) = self.block_ranges[block];
writeln!(f, " (instruction range: {} .. {})", start, end)?;
for inst in start..end {
writeln!(f, " Inst {}: {:?}", inst, self.insts[inst as usize])?;
}
}
writeln!(f, "}}")?;
Ok(())
}
}
/// Pretty-printing with `RealRegUniverse` context.
impl<I: VCodeInst + ShowWithRRU> ShowWithRRU for VCode<I> {
fn show_rru(&self, mb_rru: Option<&RealRegUniverse>) -> String {
use std::fmt::Write;
let mut s = String::new();
write!(&mut s, "VCode_ShowWithRRU {{{{\n").unwrap();
write!(&mut s, " Entry block: {}\n", self.entry).unwrap();
for i in 0..self.num_blocks() {
let block = i as BlockIndex;
write!(&mut s, "Block {}:\n", block).unwrap();
if let Some(bb) = self.bindex_to_bb(block) {
write!(&mut s, " (original IR block: {})\n", bb).unwrap();
}
for succ in self.succs(block) {
write!(&mut s, " (successor: Block {})\n", succ.get()).unwrap();
}
let (start, end) = self.block_ranges[block as usize];
write!(&mut s, " (instruction range: {} .. {})\n", start, end).unwrap();
for inst in start..end {
write!(
&mut s,
" Inst {}: {}\n",
inst,
self.insts[inst as usize].show_rru(mb_rru)
)
.unwrap();
}
}
write!(&mut s, "}}}}\n").unwrap();
s
}
}