This re-factoring replaces uses of `Inst::mov_r_m` with `Inst::store` to ensure there is only one code location to troubleshoot when generating store instructions for a specific type.
Previously, `Inst::store` only understood a subset of the scalar types, which resulted in failures seen in #2826. This change allows `Inst::store` to generate instructions for all scalar widths (`8 | 16 | 32 | 64`) since all of these are supported in the emission code of `Inst::MovRM`.
SIMD & FP registers are now saved and restored in pairs, similarly
to general-purpose registers. Also, only the bottom 64 bits of the
registers are saved and restored (in case of non-Baldrdash ABIs),
which is the requirement from the Procedure Call Standard for the
Arm 64-bit Architecture.
As for the callee-saved general-purpose registers, if a procedure
needs to save and restore an odd number of them, it no longer uses
store and load pair instructions for the last register.
Copyright (c) 2021, Arm Limited.
This commit is intended to be a perf improvement for instantiation of
modules with lots of functions. Previously the `lookup_shared_signature`
callback was showing up quite high in profiles as part of instantiation.
As some background, this callback is used to translate from a module's
`SignatureIndex` to a `VMSharedSignatureIndex` which the instance
stores. This callback is called for two reasons, one is to translate all
of the module's own types into `VMSharedSignatureIndex` for the purposes
of `call_indirect` (the translation of that loads from this table to
compare indices). The second reason is that a `VMCallerCheckedAnyfunc`
is prepared for all functions and this embeds a `VMSharedSignatureIndex`
inside of it.
The slow part today is that the lookup callback was called
once-per-function and each lookup involved hashing a full
`WasmFuncType`. Albeit our hash algorithm is still Rust's default
SipHash algorithm which is quite slow, but we also shouldn't need to
re-hash each signature if we see it multiple times anyway.
The fix applied in this commit is to change this lookup callback to an
`enum` where one variant is that there's a table to lookup from. This
table is a `PrimaryMap` which means that lookup is quite fast. The only
thing we need to do is to prepare the table ahead of time. Currently
this happens on the instantiation path because in my measurments the
creation of the table is quite fast compared to the rest of
instantiation. If this becomes an issue, though, we can look into
creating the table as part of `SigRegistry::register_module` and caching
it somewhere (I'm not entirely sure where but I'm sure we can figure it
out).
There's in generally not a ton of efficiency around the `SigRegistry`
type. I'm hoping though that this fixes the next-lowest-hanging-fruit in
terms of performance without complicating the implementation too much. I
tried a few variants and this change seemed like the best balance
between simplicity and still a nice performance gain.
Locally I measured an improvement in instantiation time for a large-ish
module by reducing the time from ~3ms to ~2.6ms per instance.
This commit updates the implementation of `VMOffsets` to frontload all
checked arithmetic on construction of the `VMOffsets` which allows
eliding all checked arithmetic when accessing the fields of `VMOffsets`.
For testing and such this adds a new constructor as well from a new
`VMOffsetsFields` structure which is a clone of the old definition.
This should help speed up some profile hot spots I've been seeing where
with all the checked arithmetic on field sizes this was slowing down the
various accessors during instantiation (which uses `VMOffsets` to
initialize various fields of the `VMContext`).
Because there are instructions that are present in more than one ISA feature set, we need to see if any of the ISA requirements match before emitting. This change includes the `VPABSQ` instruction as an example, which is present in both `AVX512F` and `AVX512VL`.
Looking at some profiles these or their related functions were all
showing up, so this commit adds `#[inline]` to allow cross-crate
inlining by default.
This fixes an issue where even if the wasmtime cache was disabled we're
still calculating the sha256 of modules for the hash key. This hash
was then simply discarded if the cache was disabled!