The EBB argument splitting may generate concat-split dependencies when
it repairs branch arguments in EBBs that have not yet been fully
legalized. Add a branch argument simplification step that can resolve
these dependency chains.
This means that all split and concatenation instructions will be dead
after legalization for types that have no legal instructions using them.
When the legalizer splits a value into halves, it would previously stop
if the value was an EBB argument. With this change, we also split EBB
arguments and iteratively split arguments on branches to the EBB.
The iterative splitting stops when we hit the entry block arguments or
an instruction that isn't one of the concatenation instructions.
Legalizing some instructions may require modifications to the control
flow graph, and some operations need to use the CFG analysis.
The CFG reference is threaded through all the legalization functions to
reach the generated expansion functions as well as the legalizer::split
module where it will be used first.
The legalizer often splits values into parts with the vsplit and
isplit_lohi instructions. Avoid doing that for values that are already
defined by the corresponding concatenation instructions.
This reduces the number of instructions created during legalization, and
it simplifies later optimizations. A number of dead concatenation
instructions are left behind. They can be trivially cleaned up by a dead
code elimination pass.
As discussed in #3.
Once we know the controlling type variable of a polymorphic instruction,
the types of input operands are either bound to known types, or they can
vary freely.
The call arguments on call_indirect should not include the fixed callee
argument.
Add legalizer assertions to verify that signatures are actually valid
after legalization. If not, we would get infinite legalizer loops.
Like the entry block arguments, the return values from a call
instruction need to be converted back from their ABI representation.
Add tests of call instruction legalization.
These low-level functions allow us to build up a list of instruction
results incrementally. They are equivalent to the existing
attach_ebb_arg and append_ebb_arg.
- abi.cton is for testing the actual RISC-V ABI.
- legalize-abi.cton is for testing the legalizer around ABI boundaries.
- parse-encoding.cton is for testing the parser's handling of RISC-V
encoding and register annotations.
Instead, just return the first of the detached values, and provide a
next_secondary_result() method for traversing the list.
This is equivalent to how detach_ebb_args() works, and it allows the
data flow graph to be modified while traversing the list of results.
The type signatures of functions can change when they are legalized for
a specific ABI. This means that all call and return instructions need to
be rewritten to use the correct arguments.
- Fix arguments to call instructions.
- Fix arguments to return instructions.
TBD:
- Fix return values from call instructions.
When the CRETONNE_DBG environment variable is set, send debug messages
to a file named cretonne.dbg.*.
The trace facility is only enabled when debug assertions are on.
Now that some instruction formats put all of their value arguments in a
value list, we need to know how many value are fixed and how many are
variable_args.
CC @angusholder who may need this information in the verifier.
Any code that needs to manipulate a variable argument list on an
instruction will need to remove the instruction's value list first,
change the list, and then put it back on the instruction. This is
required to avoid fighting the borrow checker over mutable locks on the
DataFlowGraph and its value list pool.
Add a generated InstructionData::take_value_list() method which lifts
out and existing value list and returns it, levaing an empty list in its
place, like Option::take() does it.
Add a generated InstructionData::put_value_list() which puts it back,
verifying that no existing value list is overwritten.
The value_list flag can be inferred from the presence of VARIABLE_ARGS
in the operand list.
The boxed_storage flag is obsolete. We don't need boxed storage anywhere
no that we have value lists instead.
Allow some flexibility in the signature matching for instruction
formats. In particular, look for a value list format as a second chance
option.
The Return, ReturnReg, and TernaryOverflow formats all fit the single
MultiAry catch-all format for instructions without immediate operands.
No instruction sets actually have single instructions for materializing
vector constants. You always need to use a constant pool.
Cretonne doesn't have constant pools yet, but it will in the future, and
that is how vector constants should be represented.
Instruction formats are now identified by a signature that doesn't
include the ordering of value operands relative to immediate operands.
This means that the BinaryRev instruction format becomes redundant, so
delete it. The isub_imm instruction was the only one using that format.
Rename it to irsub_imm to make it clear what it does now that it is
printed as 'irsub_imm v2, 45'.
An instruction format is now seen as having two separate operand lists:
immediates and values. Change InstructionFormat.typevar_operand to be a
pure index into the value list.
The per-instruction format low-level constructors in InstBuilder should
be independent of the relative ordering of value and immediate operands
in order to prepare for the future instruction format merger.
Reorder their arguments such that all the immediate operands are placed
before the value operands.
For instruction formats that use a value list representation, just take
a single ValueList argument. The value lists are created by the
individual instruction constructors. This means that the format
constructor doesn't care how many of the instructions operands are
'fixed' and how many are 'variable' arguments.
These two tuples contain operand indexes of the explicit value operands
and immediate operands respectively. We can no longer use the
instruction format value_operands field.