Move ABI boundary legalization into a sub-module.

Keep things organized.
This commit is contained in:
Jakob Stoklund Olesen
2017-03-20 15:14:51 -07:00
parent 90d68e0435
commit 159486c707
2 changed files with 116 additions and 92 deletions

View File

@@ -1,106 +1,34 @@
//! Legalize instructions.
//! Legalize ABI boundaries.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//! This legalizer sub-module contains code for dealing with ABI boundaries:
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//! - Function arguments passed to the entry block.
//! - Function arguments passed to call instructions.
//! - Return values from call instructions.
//! - Return values passed to return instructions.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//! The ABI boundary legalization happens in two phases:
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.
//! 1. The `legalize_signatures` function rewrites all the preamble signatures with ABI information
//! and possibly new argument types. It also rewrites the entry block arguments to match.
//! 2. The `handle_call_abi` and `handle_return_abi` functions rewrite call and return instructions
//! to match the new ABI signatures.
//!
//! Between the two phases, preamble signatures and call/return arguments don't match. This
//! intermediate state doesn't type check.
use abi::{legalize_abi_value, ValueConversion};
use ir::{Function, Cursor, DataFlowGraph, InstructionData, Opcode, Inst, InstBuilder, Ebb, Type,
Value, Signature, SigRef, ArgumentType};
use ir::condcodes::IntCC;
use ir::{Function, Cursor, DataFlowGraph, Inst, InstBuilder, Ebb, Type, Value, Signature, SigRef,
ArgumentType};
use ir::instructions::CallInfo;
use isa::{TargetIsa, Legalize};
/// Legalize `func` for `isa`.
///
/// - Transform any instructions that don't have a legal representation in `isa`.
/// - Fill out `func.encodings`.
///
pub fn legalize_function(func: &mut Function, isa: &TargetIsa) {
legalize_signatures(func, isa);
// TODO: This is very simplified and incomplete.
func.encodings.resize(func.dfg.num_insts());
let mut pos = Cursor::new(&mut func.layout);
while let Some(_ebb) = pos.next_ebb() {
// Keep track of the cursor position before the instruction being processed, so we can
// double back when replacing instructions.
let mut prev_pos = pos.position();
while let Some(inst) = pos.next_inst() {
let opcode = func.dfg[inst].opcode();
// Check for ABI boundaries that need to be converted to the legalized signature.
if opcode.is_call() && handle_call_abi(&mut func.dfg, &mut pos) {
// Go back and legalize the inserted argument conversion instructions.
pos.set_position(prev_pos);
continue;
}
if opcode.is_return() && handle_return_abi(&mut func.dfg, &mut pos, &func.signature) {
// Go back and legalize the inserted return value conversion instructions.
pos.set_position(prev_pos);
continue;
}
match isa.encode(&func.dfg, &func.dfg[inst]) {
Ok(encoding) => *func.encodings.ensure(inst) = encoding,
Err(action) => {
// We should transform the instruction into legal equivalents.
// Possible strategies are:
// 1. Legalize::Expand: Expand instruction into sequence of legal instructions.
// Possibly iteratively. ()
// 2. Legalize::Narrow: Split the controlling type variable into high and low
// parts. This applies both to SIMD vector types which can be halved and to
// integer types such as `i64` used on a 32-bit ISA. ().
// 3. TODO: Promote the controlling type variable to a larger type. This
// typically means expressing `i8` and `i16` arithmetic in terms if `i32`
// operations on RISC targets. (It may or may not be beneficial to promote
// small vector types versus splitting them.)
// 4. TODO: Convert to library calls. For example, floating point operations on
// an ISA with no IEEE 754 support.
let changed = match action {
Legalize::Expand => expand(&mut pos, &mut func.dfg),
Legalize::Narrow => narrow(&mut pos, &mut func.dfg),
};
// If the current instruction was replaced, we need to double back and revisit
// the expanded sequence. This is both to assign encodings and possible to
// expand further.
// There's a risk of infinite looping here if the legalization patterns are
// unsound. Should we attempt to detect that?
if changed {
pos.set_position(prev_pos);
}
}
}
// Remember this position in case we need to double back.
prev_pos = pos.position();
}
}
}
// Include legalization patterns that were generated by `gen_legalizer.py` from the `XForms` in
// `meta/cretonne/legalize.py`.
//
// Concretely, this defines private functions `narrow()`, and `expand()`.
include!(concat!(env!("OUT_DIR"), "/legalizer.rs"));
use isa::TargetIsa;
/// Legalize all the function signatures in `func`.
///
/// This changes all signatures to be ABI-compliant with full `ArgumentLoc` annotations. It doesn't
/// change the entry block arguments, calls, or return instructions, so this can leave the function
/// in a state with type discrepancies.
fn legalize_signatures(func: &mut Function, isa: &TargetIsa) {
pub fn legalize_signatures(func: &mut Function, isa: &TargetIsa) {
isa.legalize_signature(&mut func.signature);
for sig in func.dfg.signatures.keys() {
isa.legalize_signature(&mut func.dfg.signatures[sig]);
@@ -507,7 +435,7 @@ fn legalize_inst_arguments<ArgType>(dfg: &mut DataFlowGraph,
/// original return values. The call's result values will be adapted to match the new signature.
///
/// Returns `true` if any instructions were inserted.
fn handle_call_abi(dfg: &mut DataFlowGraph, pos: &mut Cursor) -> bool {
pub fn handle_call_abi(dfg: &mut DataFlowGraph, pos: &mut Cursor) -> bool {
let mut inst = pos.current_inst().expect("Cursor must point to a call instruction");
// Start by checking if the argument types already match the signature.
@@ -542,7 +470,7 @@ fn handle_call_abi(dfg: &mut DataFlowGraph, pos: &mut Cursor) -> bool {
/// Insert ABI conversion code before and after the call instruction at `pos`.
///
/// Return `true` if any instructions were inserted.
fn handle_return_abi(dfg: &mut DataFlowGraph, pos: &mut Cursor, sig: &Signature) -> bool {
pub fn handle_return_abi(dfg: &mut DataFlowGraph, pos: &mut Cursor, sig: &Signature) -> bool {
let inst = pos.current_inst().expect("Cursor must point to a return instruction");
// Check if the returned types already match the signature.

View File

@@ -0,0 +1,96 @@
//! Legalize instructions.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.
use ir::{Function, Cursor, DataFlowGraph, InstructionData, Opcode, InstBuilder};
use ir::condcodes::IntCC;
use isa::{TargetIsa, Legalize};
mod boundary;
/// Legalize `func` for `isa`.
///
/// - Transform any instructions that don't have a legal representation in `isa`.
/// - Fill out `func.encodings`.
///
pub fn legalize_function(func: &mut Function, isa: &TargetIsa) {
boundary::legalize_signatures(func, isa);
// TODO: This is very simplified and incomplete.
func.encodings.resize(func.dfg.num_insts());
let mut pos = Cursor::new(&mut func.layout);
while let Some(_ebb) = pos.next_ebb() {
// Keep track of the cursor position before the instruction being processed, so we can
// double back when replacing instructions.
let mut prev_pos = pos.position();
while let Some(inst) = pos.next_inst() {
let opcode = func.dfg[inst].opcode();
// Check for ABI boundaries that need to be converted to the legalized signature.
if opcode.is_call() && boundary::handle_call_abi(&mut func.dfg, &mut pos) {
// Go back and legalize the inserted argument conversion instructions.
pos.set_position(prev_pos);
continue;
}
if opcode.is_return() &&
boundary::handle_return_abi(&mut func.dfg, &mut pos, &func.signature) {
// Go back and legalize the inserted return value conversion instructions.
pos.set_position(prev_pos);
continue;
}
match isa.encode(&func.dfg, &func.dfg[inst]) {
Ok(encoding) => *func.encodings.ensure(inst) = encoding,
Err(action) => {
// We should transform the instruction into legal equivalents.
// Possible strategies are:
// 1. Legalize::Expand: Expand instruction into sequence of legal instructions.
// Possibly iteratively. ()
// 2. Legalize::Narrow: Split the controlling type variable into high and low
// parts. This applies both to SIMD vector types which can be halved and to
// integer types such as `i64` used on a 32-bit ISA. ().
// 3. TODO: Promote the controlling type variable to a larger type. This
// typically means expressing `i8` and `i16` arithmetic in terms if `i32`
// operations on RISC targets. (It may or may not be beneficial to promote
// small vector types versus splitting them.)
// 4. TODO: Convert to library calls. For example, floating point operations on
// an ISA with no IEEE 754 support.
let changed = match action {
Legalize::Expand => expand(&mut pos, &mut func.dfg),
Legalize::Narrow => narrow(&mut pos, &mut func.dfg),
};
// If the current instruction was replaced, we need to double back and revisit
// the expanded sequence. This is both to assign encodings and possible to
// expand further.
// There's a risk of infinite looping here if the legalization patterns are
// unsound. Should we attempt to detect that?
if changed {
pos.set_position(prev_pos);
}
}
}
// Remember this position in case we need to double back.
prev_pos = pos.position();
}
}
}
// Include legalization patterns that were generated by `gen_legalizer.py` from the `XForms` in
// `meta/cretonne/legalize.py`.
//
// Concretely, this defines private functions `narrow()`, and `expand()`.
include!(concat!(env!("OUT_DIR"), "/legalizer.rs"));