* Remove the Cranelift `vselect` instruction
This instruction is documented as selecting lanes based on the "truthy"
value of the condition lane, but the current status of the
implementation of this instruction is:
* x64 - uses the high bit for `f32x4` and `f64x2` and otherwise uses the
high bit of each byte doing a byte-wise lane select rather than
whatever the controlling type is.
* AArch64 - this is the same as `bitselect` which is a bit-wise
selection rather than a lane-wise selection.
* s390x - this is the same as AArch64, a bit-wise selection rather than
lane-wise.
* interpreter - the interpreter implements the documented semantics of
selecting based on "truthy" values.
Coupled with the status of the implementation is the fact that this
instruction is not used by WebAssembly SIMD today either. The only use
of this instruction in Cranelift is the nan-canonicalization pass. By
moving nan-canonicalization to `bitselect`, since that has the desired
semantics, there's no longer any need for `vselect`.
Given this situation this commit subsqeuently removes `vselect` and all
usage of it throughout Cranelift.
Closes#5917
* Review comments
* Bring back vselect opts as bitselect opts
* Clean up vselect usage in the interpreter
* Move bitcast in nan canonicalization
* Add a comment about float optimization
* Generalize unsigned `(x << k) >> k` optimization
Split the existing rule into three parts:
- A dual of the rule for `(x >> k) << k` that is only valid for unsigned
shifts.
- Known-bits analysis for `(band (uextend x) k)`.
- A new rule for converting `sextend` to `uextend` if the sign-extended
bits are masked out anyway.
The first two together cover the existing rule.
* Generalize signed `(x << k) >> k` optimization
* Review comments
* Generalize sign-extending shifts further
The shifts can be eliminated even if the shift amount isn't exactly
equal to the difference in bit-widths between the narrow and wide types.
* Add filetests
* Generalize `n ^ !n` optimization to more types
* Generalize `x & -1` optimization to more types
Also mark the `x & x` rewrite to `subsume`.
* Cranelift: Optimize x|!x and x&!x to constants
These cases are much like the existing x^!x rules.
We don't need to spend time going through the GVN map to dedup a
newly-constructed `iconst 0` when we already matched that value on the
left-hand side of these rules.
Also, mark these rules as subsuming any others since we can't do better
than reducing an expression to a constant.
I was playing around with souper recently on some wasms I had lying
around and these are some optimization opportunities that popped out
which seemed easy-enough to add to the egraph-based optimizations.
I audited the egraph "algebraic" optimization rules for any which
construct an `iconst` on the right-hand side of the rule. In these cases
we need to constrain the type passed to `iconst` to be both `fits_in_64`
and `ty_int`, because `iconst` is not defined on other types.
* Remove trailing whitespace in `lower.isle` files
* Legalize the `band_not` instruction into simpler form
This commit legalizes the `band_not` instruction into `band`-of-`bnot`,
or two instructions. This is intended to assist with egraph-based
optimizations where the `band_not` instruction doesn't have to be
specifically included in other bit-operation-patterns.
Lowerings of the `band_not` instruction have been moved to a
specialization of the `band` instruction.
* Legalize `bor_not` into components
Same as prior commit, but for the `bor_not` instruction.
* Legalize bxor_not into bxor-of-bnot
Same as prior commits. I think this also ended up fixing a bug in the
s390x backend where `bxor_not x y` was actually translated as `bnot
(bxor x y)` by accident given the test update changes.
* Simplify not-fused operands for riscv64
Looks like some delegated-to rules have special-cases for "if this
feature is enabled use the fused instruction" so move the clause for
testing the feature up to the lowering phase to help trigger other rules
if the feature isn't enabled. This should make the riscv64 backend more
consistent with how other backends are implemented.
* Remove B{and,or,xor}Not from cost of egraph metrics
These shouldn't ever reach egraphs now that they're legalized away.
* Add an egraph optimization for `x^-1 => ~x`
This adds a simplification node to translate xor-against-minus-1 to a
`bnot` instruction. This helps trigger various other optimizations in
the egraph implementation and also various backend lowering rules for
instructions. This is chiefly useful as wasm doesn't have a `bnot`
equivalent, so it's encoded as `x^-1`.
* Add a wasm test for end-to-end bitwise lowerings
Test that end-to-end various optimizations are being applied for input
wasm modules.
* Specifically don't self-update rustup on CI
I forget why this was here originally, but this is failing on Windows
CI. In general there's no need to update rustup, so leave it as-is.
* Cleanup some aarch64 lowering rules
Previously a 32/64 split was necessary due to the `ALUOp` being different
but that's been refactored away no so there's no longer any need for
duplicate rules.
* Narrow a x64 lowering rule
This previously made more sense when it was `band_not` and rarely used,
but be more specific in the type-filter on this rule that it's only
applicable to SIMD types with lanes.
* Simplify xor-against-minus-1 rule
No need to have the commutative version since constants are already
shuffled right for egraphs
* Optimize band-of-bnot when bnot is on the left
Use some more rules in the egraph algebraic optimizations to
canonicalize band/bor/bxor with a `bnot` operand to put the operand on
the right. That way the lowerings in the backends only have to list the
rule once, with the operand on the right, to optimize both styles of
input.
* Add commutative lowering rules
* Update cranelift/codegen/src/isa/x64/lower.isle
Co-authored-by: Jamey Sharp <jamey@minilop.net>
---------
Co-authored-by: Jamey Sharp <jamey@minilop.net>
Also move these optimization rules to cprop.isle; it's where all the
other similar rules are.
Like the other cprop rules, these can subsume any other rules. We can't
do better than reducing an expression to a constant.
The new i64_sextend_imm64 and u64_uextend_imm64 constructors are useful
helpers to clean up other code. I applied them to `imm64_icmp` while I
was here, as well as using the existing `ty_mask` helper to clean up
`imm64_masked`.
This rewrite was introduced in #5676 and then reverted in #5682 due to a footgun
where we accidentally weren't actually checking the `y == !z` precondition. This
commit fixes the precondition check. It also fixes the arithmetic to be
correctly masked to the value type's width.
This reverts commit 268f6bfc1d.
* Fix optimization rules for narrow types: wrap i8 results to 8 bits.
This fixes#5405.
In the egraph mid-end's optimization rules, we were rewriting e.g. imuls
of two iconsts to an iconst of the result, but without masking off the
high bits (beyond the result type's width). This was producing iconsts
with set high bits beyond their types' width, which is not legal.
In addition, this PR adds some optimizations to the algebraic rules to
recognize e.g. `x == x` (and all other integer comparison operators) and
resolve to 1 or 0 as appropriate.
* Review feedback.
* Review feedback, again.
* Optimizations to egraph framework:
- Save elaborated results by canonical value, not latest value (union
value). Previously we were artificially skipping and re-elaborating
some values we already had because we were not finding them in the
map.
- Make some changes to handling of icmp results: when icmp became
I8-typed (when bools went away), many uses became `(uextend $I32 (icmp
$I8 ...))`, and so patterns in lowering backends were no longer
matching.
This PR includes an x64-specific change to match `(brz (uextend (icmp
...)))` and similarly for `brnz`, but it also takes advantage of the
ability to write rules easily in the egraph mid-end to rewrite selects
with icmp inputs appropriately.
- Extend constprop to understand selects in the egraph mid-end.
With these changes, bz2.wasm sees a ~1% speedup, and spidermonkey.wasm
with a fib.js input sees a 16.8% speedup:
```
$ time taskset 1 target/release/wasmtime run --allow-precompiled --dir=. ./spidermonkey.base.cwasm ./fib.js
1346269
taskset 1 target/release/wasmtime run --allow-precompiled --dir=. ./fib.js 2.14s user 0.01s system 99% cpu 2.148 total
$ time taskset 1 target/release/wasmtime run --allow-precompiled --dir=. ./spidermonkey.egraphs.cwasm ./fib.js
1346269
taskset 1 target/release/wasmtime run --allow-precompiled --dir=. ./fib.js 1.78s user 0.01s system 99% cpu 1.788 total
```
* Review feedback.
* egraph support: rewrite to work in terms of CLIF data structures.
This work rewrites the "egraph"-based optimization framework in
Cranelift to operate on aegraphs (acyclic egraphs) represented in the
CLIF itself rather than as a separate data structure to which and from
which we translate the CLIF.
The basic idea is to add a new kind of value, a "union", that is like an
alias but refers to two other values rather than one. This allows us to
represent an eclass of enodes (values) as a tree. The union node allows
for a value to have *multiple representations*: either constituent value
could be used, and (in well-formed CLIF produced by correct
optimization rules) they must be equivalent.
Like the old egraph infrastructure, we take advantage of acyclicity and
eager rule application to do optimization in a single pass. Like before,
we integrate GVN (during the optimization pass) and LICM (during
elaboration).
Unlike the old egraph infrastructure, everything stays in the
DataFlowGraph. "Pure" enodes are represented as instructions that have
values attached, but that are not placed into the function layout. When
entering "egraph" form, we remove them from the layout while optimizing.
When leaving "egraph" form, during elaboration, we can place an
instruction back into the layout the first time we elaborate the enode;
if we elaborate it more than once, we clone the instruction.
The implementation performs two passes overall:
- One, a forward pass in RPO (to see defs before uses), that (i) removes
"pure" instructions from the layout and (ii) optimizes as it goes. As
before, we eagerly optimize, so we form the entire union of optimized
forms of a value before we see any uses of that value. This lets us
rewrite uses to use the most "up-to-date" form of the value and
canonicalize and optimize that form.
The eager rewriting and acyclic representation make each other work
(we could not eagerly rewrite if there were cycles; and acyclicity
does not miss optimization opportunities only because the first time
we introduce a value, we immediately produce its "best" form). This
design choice is also what allows us to avoid the "parent pointers"
and fixpoint loop of traditional egraphs.
This forward optimization pass keeps a scoped hashmap to "intern"
nodes (thus performing GVN), and also interleaves on a per-instruction
level with alias analysis. The interleaving with alias analysis allows
alias analysis to see the most optimized form of each address (so it
can see equivalences), and allows the next value to see any
equivalences (reuses of loads or stored values) that alias analysis
uncovers.
- Two, a forward pass in domtree preorder, that "elaborates" pure enodes
back into the layout, possibly in multiple places if needed. This
tracks the loop nest and hoists nodes as needed, performing LICM as it
goes. Note that by doing this in forward order, we avoid the
"fixpoint" that traditional LICM needs: we hoist a def before its
uses, so when we place a node, we place it in the right place the
first time rather than moving later.
This PR replaces the old (a)egraph implementation. It removes both the
cranelift-egraph crate and the logic in cranelift-codegen that uses it.
On `spidermonkey.wasm` running a simple recursive Fibonacci
microbenchmark, this work shows 5.5% compile-time reduction and 7.7%
runtime improvement (speedup).
Most of this implementation was done in (very productive) pair
programming sessions with Jamey Sharp, thus:
Co-authored-by: Jamey Sharp <jsharp@fastly.com>
* Review feedback.
* Review feedback.
* Review feedback.
* Bugfix: cprop rule: `(x + k1) - k2` becomes `x - (k2 - k1)`, not `x - (k1 - k2)`.
Co-authored-by: Jamey Sharp <jsharp@fastly.com>
* cranelift: Remove iconst.i128
* bugpoint: Report Changed when only one instruction is mutated
* cranelift: Fix egraph bxor rule
* cranelift: Remove some simple_preopt opts for i128
Remove the boolean types from cranelift, and the associated instructions breduce, bextend, bconst, and bint. Standardize on using 1/0 for the return value from instructions that produce scalar boolean results, and -1/0 for boolean vector elements.
Fixes#3205
Co-authored-by: Afonso Bordado <afonso360@users.noreply.github.com>
Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Chris Fallin <chris@cfallin.org>
This is a simple error in the const-prop rules: uextend was not
masking iconst's u64 immediate when extending from i32 to
i64. Arguably an iconst.i32 should not have nonzero bits in the upper
32 of its immediate, but that's a separate design question. For now,
if our invariant is that the upper bits are ignored, then it is
required to mask the bits when const-evaling a `uextend`.
Fixes#5047.
* egraph-based midend: draw the rest of the owl.
* Rename `egg` submodule of cranelift-codegen to `egraph`.
* Apply some feedback from @jsharp during code walkthrough.
* Remove recursion from find_best_node by doing a single pass.
Rather than recursively computing the lowest-cost node for a given
eclass and memoizing the answer at each eclass node, we can do a single
forward pass; because every eclass node refers only to earlier nodes,
this is sufficient. The behavior may slightly differ from the earlier
behavior because we cannot short-circuit costs to zero once a node is
elaborated; but in practice this should not matter.
* Make elaboration non-recursive.
Use an explicit stack instead (with `ElabStackEntry` entries,
alongside a result stack).
* Make elaboration traversal of the domtree non-recursive/stack-safe.
* Work analysis logic in Cranelift-side egraph glue into a general analysis framework in cranelift-egraph.
* Apply static recursion limit to rule application.
* Fix aarch64 wrt dynamic-vector support -- broken rebase.
* Topo-sort cranelift-egraph before cranelift-codegen in publish script, like the comment instructs me to!
* Fix multi-result call testcase.
* Include `cranelift-egraph` in `PUBLISHED_CRATES`.
* Fix atomic_rmw: not really a load.
* Remove now-unnecessary PartialOrd/Ord derivations.
* Address some code-review comments.
* Review feedback.
* Review feedback.
* No overlap in mid-end rules, because we are defining a multi-constructor.
* rustfmt
* Review feedback.
* Review feedback.
* Review feedback.
* Review feedback.
* Remove redundant `mut`.
* Add comment noting what rules can do.
* Review feedback.
* Clarify comment wording.
* Update `has_memory_fence_semantics`.
* Apply @jameysharp's improved loop-level computation.
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Fix suggestion commit.
* Fix off-by-one in new loop-nest analysis.
* Review feedback.
* Review feedback.
* Review feedback.
* Use `Default`, not `std::default::Default`, as per @fitzgen
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* Apply @fitzgen's comment elaboration to a doc-comment.
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* Add stat for hitting the rewrite-depth limit.
* Some code motion in split prelude to make the diff a little clearer wrt `main`.
* Take @jameysharp's suggested `try_into()` usage for blockparam indices.
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Take @jameysharp's suggestion to avoid double-match on load op.
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Fix suggestion (add import).
* Review feedback.
* Fix stack_load handling.
* Remove redundant can_store case.
* Take @jameysharp's suggested improvement to FuncEGraph::build() logic
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Tweaks to FuncEGraph::build() on top of suggestion.
* Take @jameysharp's suggested clarified condition
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Clean up after suggestion (unused variable).
* Fix loop analysis.
* loop level asserts
* Revert constant-space loop analysis -- edge cases were incorrect, so let's go with the simple thing for now.
* Take @jameysharp's suggestion re: result_tys
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Fix up after suggestion
* Take @jameysharp's suggestion to use fold rather than reduce
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* Fixup after suggestion
* Take @jameysharp's suggestion to remove elaborate_eclass_use's return value.
* Clarifying comment in terminator insts.
Co-authored-by: Jamey Sharp <jamey@minilop.net>
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>