* Add guard pages to the front of linear memories
This commit implements a safety feature for Wasmtime to place guard
pages before the allocation of all linear memories. Guard pages placed
after linear memories are typically present for performance (at least)
because it can help elide bounds checks. Guard pages before a linear
memory, however, are never strictly needed for performance or features.
The intention of a preceding guard page is to help insulate against bugs
in Cranelift or other code generators, such as CVE-2021-32629.
This commit adds a `Config::guard_before_linear_memory` configuration
option, defaulting to `true`, which indicates whether guard pages should
be present both before linear memories as well as afterwards. Guard
regions continue to be controlled by
`{static,dynamic}_memory_guard_size` methods.
The implementation here affects both on-demand allocated memories as
well as the pooling allocator for memories. For on-demand memories this
adjusts the size of the allocation as well as adjusts the calculations
for the base pointer of the wasm memory. For the pooling allocator this
will place a singular extra guard region at the very start of the
allocation for memories. Since linear memories in the pooling allocator
are contiguous every memory already had a preceding guard region in
memory, it was just the previous memory's guard region afterwards. Only
the first memory needed this extra guard.
I've attempted to write some tests to help test all this, but this is
all somewhat tricky to test because the settings are pretty far away
from the actual behavior. I think, though, that the tests added here
should help cover various use cases and help us have confidence in
tweaking the various `Config` settings beyond their defaults.
Note that this also contains a semantic change where
`InstanceLimits::memory_reservation_size` has been removed. Instead this
field is now inferred from the `static_memory_maximum_size` and guard
size settings. This should hopefully remove some duplication in these
settings, canonicalizing on the guard-size/static-size settings as the
way to control memory sizes and virtual reservations.
* Update config docs
* Fix a typo
* Fix benchmark
* Fix wasmtime-runtime tests
* Fix some more tests
* Try to fix uffd failing test
* Review items
* Tweak 32-bit defaults
Makes the pooling allocator a bit more reasonable by default on 32-bit
with these settings.
* Reimplement how instance exports are stored/loaded
This commit internally refactors how instance exports are handled and
fixes two issues. One issue is that when we instantiate an instance we
no longer forcibly load all items from the instance immediately,
deferring insertion of each item into the store data tables to happen
later as necessary. The next issue is that repeated calls to
`Caller::get_export` would continuously insert items into the store data
tables. While working as intended this was undesirable because it would
continuously push onto a vector that only got deallocated once the
entire store was deallocate. Now it's routed to `Instance::get_export`
which doesn't have this behavior.
Closes#2916Closes#2983
* Just define our own `Either`
The previous address calculation code had a bug where we tried to
add offsets into a temporary register before defining it, causing
the regalloc to complain.
* Add support for processor features (including auto-detection).
* Move base architecture set requirement back to z14.
* Add z15 feature sets and re-enable z15-specific code generation
when required features are available.
* Update wasm-tools crates
This brings in recent updates, notably including more improvements to
wasm-smith which will hopefully help exercise non-trapping wasm more.
* Fix some wat
This adds full back-end support for the Fence, AtomicLoad
and AtomicStore operations, and partial support for the
AtomicCas and AtomicRmw operations.
The missing pieces include sub-word operations, operations
on little-endian memory requiring byte-swapping, and some
of the subtypes of AtomicRmw -- everything that cannot be
implemented without a compare-and-swap loop. This will be
done in a follow-up patch.
This patch already suffices to make the test suite green
again after a recent change that now requires atomic
operations when accessing the heap.
We have 3 different aproaches depending on the type of comparision requested:
* For eq/ne we compare the high bits and low bits and check
if they are equal
* For overflow checks, we perform a i128 add and check the
resulting overflow flag
* For the remaining comparisions (gt/lt/sgt/etc...)
We compare both the low bits and high bits, and if the high bits are
equal we return the result of the unsigned comparision on the low bits
As with other i128 ops, we are still missing immlogic support.
Currently we just basically use a two instruction version of the same i64 ops.
IMMLogic doesn't really support multiple register inputs, so its left as a TODO for future optimizations.
* Introduce new_got_entry and new_plt_entry functions
* Return NonNull<*const u8> from get_got_address
* Make GOT entry writes atomic
* Defer GOT updates until relocations and protection
Co-authored-by: Alan Egerton <eggyal@gmail.com>
This is currently a very common operation in host bindings where if wasm
gives a host function a relative pointer you'll want to simulataneously
work with the host state and the wasm memory. These two regions are
distinct and safe to borrow mutably simulataneously but it's not obvious
in the Rust type system that this is so, so add a helper method here to
assist in doing so.
* wasmtime_runtime: move ResourceLimiter defaults into this crate
In preparation of changing wasmtime::ResourceLimiter to be a re-export
of this definition, because translating between two traits was causing
problems elsewhere.
* wasmtime: make ResourceLimiter a re-export of wasmtime_runtime::ResourceLimiter
* refactor Store internals to support ResourceLimiter as part of store's data
* add hooks for entering and exiting native code to Store
* wasmtime-wast, fuzz: changes to adapt ResourceLimiter API
* fix tests
* wrap calls into wasm with entering/exiting exit hooks as well
* the most trivial test found a bug, lets write some more
* store: mark some methods as #[inline] on Store, StoreInner, StoreInnerMost
Co-authored-By: Alex Crichton <alex@alexcrichton.com>
* improve tests for the entering/exiting native hooks
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
Enabling runtests for the s390x backend exposed a pre-existing endian bug with handling bool test case return values.
These are written as integers of the same width by the trampoline, but are always read out as the Rust "bool" type. This happens to work on little-endian systems, but fails for any boolean type larger than 1 byte on big-endian systems.
See: https://github.com/bytecodealliance/wasmtime/pull/2964#issuecomment-855879866
With this change we now reuse tests across multiple arches.
Duplicate tests were merged into the same file where possible.
Some legacy x86 tests were left in separate files due to incompatibilities with the rest of the test suite.
* Add support for x64 packed promote low
* Add support for x64 packed floating point demote
* Update vector promote low and demote by adding constraints
Also does some renaming and minor refactoring
* make Module::deserialize's version check optional via Config
A SerializedModule contains the CARGO_PKG_VERSION string, which is
checked for equality when loading. This is a great guard-rail but
some users may want to disable this check (e.g. so they can implement
their own versioning scheme)
* rename config to deserialize_check_wasmtime_version
* add test
* fix doc links
* fix
* thank you rustdoc
* Add the ability to cache typechecking an instance
This commit adds the abilty to cache the type-checked imports of an
instance if an instance is going to be instantiated multiple times. This
can also be useful to do a "dry run" of instantiation where no wasm code
is run but it's double-checked that a `Linker` possesses everything
necessary to instantiate the provided module.
This should ideally help cut down repeated instantiation costs slightly
by avoiding type-checking and allocation a `Vec<Extern>` on each
instantiation. It's expected though that the impact on instantiation
time is quite small and likely not super significant. The functionality,
though, of pre-checking can be useful for some embeddings.
* Fix build with async