* x64: Improve memory support in `{insert,extract}lane`
This commit improves adds support to Cranelift to emit `pextr{b,w,d,q}`
with a memory destination, merging a store-of-extract operation into one
instruction. Additionally AVX support is added for the `pextr*`
instructions.
I've additionally tried to ensure that codegen tests and runtests exist
for all forms of these instructions too.
* Add missing commas
* Fix tests
* x64: Add a smattering of lowerings for `shuffle` specializations (#5930)
* x64: Add lowerings for `punpck{h,l}wd`
Add some special cases for `shuffle` for more specialized x86
instructions.
* x64: Add `shuffle` lowerings for `pshufd`
This commit adds special-cased lowerings for the x64 `shuffle`
instruction when the `pshufd` instruction alone is necessary. This is
possible when the shuffle immediate permutes 32-bit values within one of
the vector inputs of the `shuffle` instruction, but not both.
* x64: Add shuffle lowerings for `punpck{h,l}{q,}dq`
This adds specific permutations for some x86 instructions which
specifically interleave high/low bytes for 32 and 64-bit values. This
corresponds to the preexisting specific lowerings for interleaving 8 and
16-bit values.
* x64: Add `shuffle` lowerings for `shufps`
This commit adds targeted lowerings for the `shuffle` instruction that
match the pattern that `shufps` supports. The `shufps` instruction
selects two elements from the first vector and two elements from the
second vector which means while it's not generally applicable it should
still be more useful than the catch-all lowering of `shuffle`.
* x64: Add shuffle support for `pshuf{l,h}w`
This commit adds special lowering cases for these instructions which
permute 16-bit values within a 128-bit value either within the upper or
lower half of the 128-bit value.
* x64: Specialize `shuffle` with an all-zeros immediate
Instead of loading the all-zeros immediate from a rip-relative address
at the end of the function instead generate a zero with a `pxor`
instruction and then use `pshufb` to do the broadcast.
* Review comments
* x64: Add an AVX encoding for the `pshufd` instruction
This will benefit from lack of need for alignment vs the `pshufd`
instruction if working with a memory operand and additionally, as I've
just learned, this reduces dependencies between instructions because the
`v*` instructions zero the upper bits as opposed to preserving them
which could accidentally create false dependencies in the CPU between
instructions.
* x64: Add more support for AVX loads/stores
This commit adds VEX-encoded versions of instructions such as
`mov{ss,sd,upd,ups,dqu}` for load and store operations. This also
changes some signatures so the `load` helpers specifically take a
`SyntheticAmode` argument which ended up doing a small refactoring of
the `*_regmove` variant used for `insertlane 0` into f64x2 vectors.
* x64: Enable using AVX instructions for zero regs
This commit refactors the internal ISLE helpers for creating zero'd
xmm registers to leverage the AVX support for all other instructions.
This moves away from picking opcodes to instead picking instructions
with a bit of reorganization.
* x64: Remove `XmmConstOp` as an instruction
All existing users can be replaced with usage of the `xmm_uninit_value`
helper instruction so there's no longer any need for these otherwise
constant operations. This additionally reduces manual usage of opcodes
in favor of instruction helpers.
* Review comments
* Update test expectations
* Initial support for the Relaxed SIMD proposal
This commit adds initial scaffolding and support for the Relaxed SIMD
proposal for WebAssembly. Codegen support is supported on the x64 and
AArch64 backends on this time.
The purpose of this commit is to get all the boilerplate out of the way
in terms of plumbing through a new feature, adding tests, etc. The tests
are copied from the upstream repository at this time while the
WebAssembly/testsuite repository hasn't been updated.
A summary of changes made in this commit are:
* Lowerings for all relaxed simd opcodes have been added, currently all
exhibiting deterministic behavior. This means that few lowerings are
optimal on the x86 backend, but on the AArch64 backend, for example,
all lowerings should be optimal.
* Support is added to codegen to, eventually, conditionally generate
different code based on input codegen flags. This is intended to
enable codegen to more efficient instructions on x86 by default, for
example, while still allowing embedders to force
architecture-independent semantics and behavior. One good example of
this is the `f32x4.relaxed_fmadd` instruction which when deterministic
forces the `fma` instruction, but otherwise if the backend doesn't
have support for `fma` then intermediate operations are performed
instead.
* Lowerings of `iadd_pairwise` for `i16x8` and `i32x4` were added to the
x86 backend as they're now exercised by the deterministic lowerings of
relaxed simd instructions.
* Sample codegen tests for added for x86 and aarch64 for some relaxed
simd instructions.
* Wasmtime embedder support for the relaxed-simd proposal and forcing
determinism have been added to `Config` and the CLI.
* Support has been added to the `*.wast` runtime execution for the
`(either ...)` matcher used in the relaxed-simd proposal.
* Tests for relaxed-simd are run both with a default `Engine` as well as
a "force deterministic" `Engine` to test both configurations.
* All tests from the upstream repository were copied into Wasmtime.
These tests should be deleted when WebAssembly/testsuite is updated.
* x64: Add x86-specific lowerings for relaxed simd
This commit builds on the prior commit and adds an array of `x86_*`
instructions to Cranelift which have semantics that match their
corresponding x86 equivalents. Translation for relaxed simd is then
additionally updated to conditionally generate different CLIF for
relaxed simd instructions depending on whether the target is x86 or not.
This means that for AArch64 no changes are made but for x86 most relaxed
instructions now lower to some x86-equivalent with slightly different
semantics than the "deterministic" lowering.
* Add libcall support for fma to Wasmtime
This will be required to implement the `f32x4.relaxed_madd` instruction
(and others) when an x86 host doesn't specify the `has_fma` feature.
* Ignore relaxed-simd tests on s390x and riscv64
* Enable relaxed-simd tests on s390x
* Update cranelift/codegen/meta/src/shared/instructions.rs
Co-authored-by: Andrew Brown <andrew.brown@intel.com>
* Add a FIXME from review
* Add notes about deterministic semantics
* Don't default `has_native_fma` to `true`
* Review comments and rebase fixes
---------
Co-authored-by: Andrew Brown <andrew.brown@intel.com>