* Remove the need to have a `Store` for an `InstancePre`
This commit relaxes a requirement of the `InstancePre` API, notably its
construction via `Linker::instantiate_pre`. Previously this function
required a `Store<T>` to be present to be able to perform type-checking
on the contents of the linker, and now this requirement has been
removed.
Items stored within a linker are either a `HostFunc`, which has type
information inside of it, or an `Extern`, which doesn't have type
information inside of it. Due to the usage of `Extern` this is why a
`Store` was required during the `InstancePre` construction process, it's
used to extract the type of an `Extern`. This commit implements a
solution where the type information of an `Extern` is stored alongside
the `Extern` itself, meaning that the `InstancePre` construction process
no longer requires a `Store<T>`.
One caveat of this implementation is that some items, such as tables and
memories, technically have a "dynamic type" where during type checking
their current size is consulted to match against the minimum size
required of an import. This no longer works when using
`Linker::instantiate_pre` as the current size used is the one when it
was inserted into the linker rather than the one available at
instantiation time. It's hoped, however, that this is a relatively
esoteric use case that doesn't impact many real-world users.
Additionally note that this is an API-breaking change. Not only is the
`Store` argument removed from `Linker::instantiate_pre`, but some other
methods such as `Linker::define` grew a `Store` argument as the type
needs to be extracted when an item is inserted into a linker.
Closes#5675
* Fix the C API
* Fix benchmark compilation
* Add C API docs
* Update crates/wasmtime/src/linker.rs
Co-authored-by: Andrew Brown <andrew.brown@intel.com>
---------
Co-authored-by: Andrew Brown <andrew.brown@intel.com>
* Remove explicit `S` type parameters
This commit removes the explicit `S` type parameter on `Func::typed` and
`Instance::get_typed_func`. Historical versions of Rust required that
this be a type parameter but recent rustcs support a mixture of explicit
type parameters and `impl Trait`. This removes, at callsites, a
superfluous `, _` argument which otherwise never needs specification.
* Fix mdbook examples
* Return `anyhow::Error` from host functions instead of `Trap`
This commit refactors how errors are modeled when returned from host
functions and additionally refactors how custom errors work with `Trap`.
At a high level functions in Wasmtime that previously worked with
`Result<T, Trap>` now work with `Result<T>` instead where the error is
`anyhow::Error`. This includes functions such as:
* Host-defined functions in a `Linker<T>`
* `TypedFunc::call`
* Host-related callbacks like call hooks
Errors are now modeled primarily as `anyhow::Error` throughout Wasmtime.
This subsequently removes the need for `Trap` to have the ability to
represent all host-defined errors as it previously did. Consequently the
`From` implementations for any error into a `Trap` have been removed
here and the only embedder-defined way to create a `Trap` is to use
`Trap::new` with a custom string.
After this commit the distinction between a `Trap` and a host error is
the wasm backtrace that it contains. Previously all errors in host
functions would flow through a `Trap` and get a wasm backtrace attached
to them, but now this only happens if a `Trap` itself is created meaning
that arbitrary host-defined errors flowing from a host import to the
other side won't get backtraces attached. Some internals of Wasmtime
itself were updated or preserved to use `Trap::new` to capture a
backtrace where it seemed useful, such as when fuel runs out.
The main motivation for this commit is that it now enables hosts to
thread a concrete error type from a host function all the way through to
where a wasm function was invoked. Previously this could not be done
since the host error was wrapped in a `Trap` that didn't provide the
ability to get at the internals.
A consequence of this commit is that when a host error is returned that
isn't a `Trap` we'll capture a backtrace and then won't have a `Trap` to
attach it to. To avoid losing the contextual information this commit
uses the `Error::context` method to attach the backtrace as contextual
information to ensure that the backtrace is itself not lost.
This is a breaking change for likely all users of Wasmtime, but it's
hoped to be a relatively minor change to workaround. Most use cases can
likely change `-> Result<T, Trap>` to `-> Result<T>` and otherwise
explicit creation of a `Trap` is largely no longer necessary.
* Fix some doc links
* add some tests and make a backtrace type public (#55)
* Trap: avoid a trailing newline in the Display impl
which in turn ends up with three newlines between the end of the
backtrace and the `Caused by` in the anyhow Debug impl
* make BacktraceContext pub, and add tests showing downcasting behavior of anyhow::Error to traps or backtraces
* Remove now-unnecesary `Trap` downcasts in `Linker::module`
* Fix test output expectations
* Remove `Trap::i32_exit`
This commit removes special-handling in the `wasmtime::Trap` type for
the i32 exit code required by WASI. This is now instead modeled as a
specific `I32Exit` error type in the `wasmtime-wasi` crate which is
returned by the `proc_exit` hostcall. Embedders which previously tested
for i32 exits now downcast to the `I32Exit` value.
* Remove the `Trap::new` constructor
This commit removes the ability to create a trap with an arbitrary error
message. The purpose of this commit is to continue the prior trend of
leaning into the `anyhow::Error` type instead of trying to recreate it
with `Trap`. A subsequent simplification to `Trap` after this commit is
that `Trap` will simply be an `enum` of trap codes with no extra
information. This commit is doubly-motivated by the desire to always use
the new `BacktraceContext` type instead of sometimes using that and
sometimes using `Trap`.
Most of the changes here were around updating `Trap::new` calls to
`bail!` calls instead. Tests which assert particular error messages
additionally often needed to use the `:?` formatter instead of the `{}`
formatter because the prior formats the whole `anyhow::Error` and the
latter only formats the top-most error, which now contains the
backtrace.
* Merge `Trap` and `TrapCode`
With prior refactorings there's no more need for `Trap` to be opaque or
otherwise contain a backtrace. This commit parse down `Trap` to simply
an `enum` which was the old `TrapCode`. All various tests and such were
updated to handle this.
The main consequence of this commit is that all errors have a
`BacktraceContext` context attached to them. This unfortunately means
that the backtrace is printed first before the error message or trap
code, but given all the prior simplifications that seems worth it at
this time.
* Rename `BacktraceContext` to `WasmBacktrace`
This feels like a better name given how this has turned out, and
additionally this commit removes having both `WasmBacktrace` and
`BacktraceContext`.
* Soup up documentation for errors and traps
* Fix build of the C API
Co-authored-by: Pat Hickey <pat@moreproductive.org>
* Change wasm-to-host trampolines to take the values_vec size
This commit changes the ABI of wasm-to-host trampolines, which are
only used right now for functions created with `Func::new`, to pass
along the size of the `values_vec` argument. Previously the trampoline
simply received `*mut ValRaw` and assumed that it was the appropriate
size. By receiving a size as well we can thread through `&mut [ValRaw]`
internally instead of `*mut ValRaw`.
The original motivation for this is that I'm planning to leverage these
trampolines for the component model for host-defined functions. Out of
an abundance of caution of making sure that everything lines up I wanted
to be able to write down asserts about the size received at runtime
compared to the size expected. This overall led me to the desire to
thread this size parameter through on the assumption that it would not
impact performance all that much.
I ran two benchmarks locally from the `call.rs` benchmark and got:
* `sync/no-hook/wasm-to-host - nop - unchecked` - no change
* `sync/no-hook/wasm-to-host - nop-params-and-results - unchecked` - 5%
slower
This is what I roughly expected in that if nothing actually reads the
new parameter (e.g. no arguments) then threading through the parameter
is effectively otherwise free. Otherwise though accesses to the `ValRaw`
storage is now bounds-checked internally in Wasmtime instead of assuming
it's valid, leading to the 5% slowdown (~9.6ns to ~10.3ns). If this
becomes a peformance bottleneck for a particular use case then we should
be fine to remove the bounds checking here or otherwise only bounds
check in debug mode, otherwise I plan on leaving this as-is.
Of particular note this also changes the C API for `*_unchecked`
functions where the C callback now receives the size of the array as
well.
* Add docs
* Make `ValRaw` fields private
Force accessing to go through constructors and accessors to localize the
knowledge about little-endian-ness. This is spawned since I made a
mistake in #4039 about endianness.
* Fix some tests
* Component model changes
* Store the `ValRaw` type in little-endian format
This commit changes the internal representation of the `ValRaw` type to
an unconditionally little-endian format instead of its current
native-endian format. The documentation and various accessors here have
been updated as well as the associated trampolines that read `ValRaw`
to always work with little-endian values, converting to the host
endianness as necessary.
The motivation for this change originally comes from the implementation
of the component model that I'm working on. One aspect of the component
model's canonical ABI is how variants are passed to functions as
immediate arguments. For example for a component model function:
```
foo: function(x: expected<i32, f64>)
```
This translates to a core wasm function:
```wasm
(module
(func (export "foo") (param i32 i64)
;; ...
)
)
```
The first `i32` parameter to the core wasm function is the discriminant
of whether the result is an "ok" or an "err". The second `i64`, however,
is the "join" operation on the `i32` and `f64` payloads. Essentially
these two types are unioned into one type to get passed into the function.
Currently in the implementation of the component model my plan is to
construct a `*mut [ValRaw]` to pass through to WebAssembly, always
invoking component exports through host trampolines. This means that the
implementation for `Result<T, E>` needs to do the correct "join"
operation here when encoding a particular case into the corresponding
`ValRaw`.
I personally found this particularly tricky to do structurally. The
solution that I settled on with fitzgen was that if `ValRaw` was always
stored in a little endian format then we could employ a trick where when
encoding a variant we first set all the `ValRaw` slots to zero, then the
associated case we have is encoding. Afterwards the `ValRaw` values are
already encoded into the correct format as if they'd been "join"ed.
For example if we were to encode `Ok(1i32)` then this would produce
`ValRaw { i32: 1 }`, which memory-wise is equivalent to `ValRaw { i64: 1 }`
if the other bytes in the `ValRaw` are guaranteed to be zero. Similarly
storing `ValRaw { f64 }` is equivalent to the storage required for
`ValRaw { i64 }` here in the join operation.
Note, though, that this equivalence relies on everything being
little-endian. Otherwise the in-memory representations of `ValRaw { i32: 1 }`
and `ValRaw { i64: 1 }` are different.
That motivation is what leads to this change. It's expected that this is
a low-to-zero cost change in the sense that little-endian platforms will
see no change and big-endian platforms are already required to
efficiently byte-swap loads/stores as WebAssembly requires that.
Additionally the `ValRaw` type is an esoteric niche use case primarily
used for accelerating the C API right now, so it's expected that not
many users will have to update for this change.
* Track down some more endianness conversions
* Refactor away the `Instantiator` type in Wasmtime
This internal type in Wasmtime was primarily used for the module linking
proposal to handle instantiation of many instances and refactor out the
sync and async parts to minimize duplication. With the removal of the
module linking proposal, however, this type isn't really necessary any
longer. In working to implement the component model proposal I was
looking already to refactor this and I figured it'd be good to land that
ahead of time on `main` separate of other refactorings.
This commit removes the `Instantiator` type in the `instance` module.
The type was already private to Wasmtime so this shouldn't have any
impact on consumers. This allows simplifying various code paths to avoid
another abstraction. The meat of instantiation is moved to
`Instance::new_raw` which should be reusable for the component model as
well.
One bug is actually fixed in this commit as well where
`Linker::instantiate` and `InstancePre::instantiate` failed to check
that async support was disabled on a store. This means that they could
have led to a panic if used with an async store and a start function
called an async import (or an async resource limiter yielded). A few
tests were updated with this.
* Review comments
* Instead of simply panicking, return an error when we attempt to resume on a dying fiber.
This situation should never occur in the existing code base, but can be
triggered if support for running outside async code in a call hook.
* Shift `async_cx()` to return an `Option`, reflecting if the fiber is dying.
This should never happen in the existing code base, but is a nice
forward-looking guard. The current implementations simply lift the
trap that would eventually be produced by such an operation into
a `Trap` (or similar) at the invocation of `async_cx()`.
* Add support for using `async` call hooks.
This retains the ability to do non-async hooks. Hooks end up being
implemented as an async trait with a handler call, to get around some
issues passing around async closures. This change requires some of
the prior changes to handle picking up blocked tasks during fiber
shutdown, to avoid some panics during timeouts and other such events.
* More fully specify a doc link, to avoid a doc-building error.
* Revert the use of catchable traps on cancellation of a fiber; turn them into expect()/unwrap().
The justification for this revert is that (a) these events shouldn't
happen, and (b) they wouldn't be catchable by wasm anyways.
* Replace a duplicated check in `async` hook evaluation with a single check.
This also moves the checks inside of their respective Async variants,
meaning that if you're using an async-enabled version of wasmtime but
using the synchronous versions of the callbacks, you won't pay any
penalty for validating the async context.
* Use `match &mut ...` insead of `ref mut`.
* Add some documentation on why/when `async_cx` can return None.
* Add two simple test cases for async call hooks.
* Fix async_cx() to check both the box and the value for current_poll_cx.
In the prior version, we only checked that the box had not been cleared,
but had not ensured that there was an actual context for us to use. This
updates the check to validate both, returning None if the inner context
is missing. This allows us to skip a validation check inside `block_on`,
since all callers will have run through the `async_cx` check prior to
arrival.
* Tweak the timeout test to address PR suggestions.
* Add a test about dropping async hooks while suspended
Should help exercise that the check for `None` is properly handled in a
few more locations.
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
This commit fixes calling the call hooks configured in a store for host
functions defined with `Func::new_unchecked` or similar. I believe that
this was just an accidental oversight and there's no fundamental reason
to not support this.
* Optimize `Func::call` and its C API
This commit is an alternative to #3298 which achieves effectively the
same goal of optimizing the `Func::call` API as well as its C API
sibling of `wasmtime_func_call`. The strategy taken here is different
than #3298 though where a new API isn't created, rather a small tweak to
an existing API is done. Specifically this commit handles the major
sources of slowness with `Func::call` with:
* Looking up the type of a function, to typecheck the arguments with and
use to guide how the results should be loaded, no longer hits the
rwlock in the `Engine` but instead each `Func` contains its own
`FuncType`. This can be an unnecessary allocation for funcs not used
with `Func::call`, so this is a downside of this implementation
relative to #3298. A mitigating factor, though, is that instance
exports are loaded lazily into the `Store` and in theory not too many
funcs are active in the store as `Func` objects.
* Temporary storage is amortized with a long-lived `Vec` in the `Store`
rather than allocating a new vector on each call. This is basically
the same strategy as #3294 only applied to different types in
different places. Specifically `wasmtime::Store` now retains a
`Vec<u128>` for `Func::call`, and the C API retains a `Vec<Val>` for
calling `Func::call`.
* Finally, an API breaking change is made to `Func::call` and its type
signature (as well as `Func::call_async`). Instead of returning
`Box<[Val]>` as it did before this function now takes a
`results: &mut [Val]` parameter. This allows the caller to manage the
allocation and we can amortize-remove it in `wasmtime_func_call` by
using space after the parameters in the `Vec<Val>` we're passing in.
This change is naturally a breaking change and we'll want to consider
it carefully, but mitigating factors are that most embeddings are
likely using `TypedFunc::call` instead and this signature taking a
mutable slice better aligns with `Func::new` which receives a mutable
slice for the results.
Overall this change, in the benchmark of "call a nop function from the C
API" is not quite as good as #3298. It's still a bit slower, on the
order of 15ns, because there's lots of capacity checks around vectors
and the type checks are slightly less optimized than before. Overall
though this is still significantly better than today because allocations
and the rwlock to acquire the type information are both avoided. I
personally feel that this change is the best to do because it has less
of an API impact than #3298.
* Rebase issues