This notably updates `wasmparser` for updates to the relaxed-simd
proposal and an implementation of the function-references proposal.
Additionally there are some minor bug fixes being picked up for WIT and
the component model.
* Replace resize+copy_from_slice with extend_from_slice
Vec::resize initializes the new space, which is wasted effort if we're
just going to call `copy_from_slice` on it immediately afterward. Using
`extend_from_slice` is simpler, and very slightly faster.
If the new size were bigger than the buffer we're copying from, then it
would make sense to initialize the excess. But it isn't: it's always
exactly the same size.
* Move helpers from Context to CompiledCode
These methods only use information from Context::compiled_code, so they
should live on CompiledCode instead.
* Remove an unnecessary #[cfg_attr]
There are other uses of `#[allow(clippy::too_many_arguments)]` in this
file, so apparently it doesn't need to be guarded by the "cargo-clippy"
feature.
* Fix a few comments
Two of these were wrong/misleading:
- `FunctionBuilder::new` does not clear the provided func_ctx. It does
debug-assert that the context is already clear, but I don't think
that's worth a comment.
- `switch_to_block` does not "create values for the arguments." That's
done by the combination of `append_block_params_for_function_params`
and `declare_wasm_parameters`.
* wasmtime-cranelift: Misc cleanups
The main change is to use the `CompiledCode` reference we already had
instead of getting it out of `Context` repeatedly. This removes a bunch
of `unwrap()` calls.
* wasmtime-cranelift: Factor out uncached compile
* Update wasm-tools dependencies
This update brings in a number of features such as:
* The component model binary format and AST has been slightly adjusted
in a few locations. Names are dropped from parameters/results now in
the internal representation since they were not used anyway. At this
time the ability to bind a multi-return function has not been exposed.
* The `wasmparser` validator pass will now share allocations with prior
functions, providing what's probably a very minor speedup for Wasmtime
itself.
* The text format for many component-related tests now requires named
parameters.
* Some new relaxed-simd instructions are updated to be ignored.
I hope to have a follow-up to expose the multi-return ability to the
embedding API of components.
* Update audit information for new crates
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime.
After the suggestion of Chris, `Function` has been split into mostly two parts:
- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.
Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:
- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
- `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
- The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.
The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.
A basic fuzz target has been introduced that tries to do the bare minimum:
- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
- This last check is less efficient and less likely to happen, so probably should be rethought a bit.
Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.
Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement.
Fixes#4155.
* Cranellift: remove Baldrdash support and related features.
As noted in Mozilla's bugzilla bug 1781425 [1], the SpiderMonkey team
has recently determined that their current form of integration with
Cranelift is too hard to maintain, and they have chosen to remove it
from their codebase. If and when they decide to build updated support
for Cranelift, they will adopt different approaches to several details
of the integration.
In the meantime, after discussion with the SpiderMonkey folks, they
agree that it makes sense to remove the bits of Cranelift that exist
to support the integration ("Baldrdash"), as they will not need
them. Many of these bits are difficult-to-maintain special cases that
are not actually tested in Cranelift proper: for example, the
Baldrdash integration required Cranelift to emit function bodies
without prologues/epilogues, and instead communicate very precise
information about the expected frame size and layout, then stitched
together something post-facto. This was brittle and caused a lot of
incidental complexity ("fallthrough returns", the resulting special
logic in block-ordering); this is just one example. As another
example, one particular Baldrdash ABI variant processed stack args in
reverse order, so our ABI code had to support both traversal
orders. We had a number of other Baldrdash-specific settings as well
that did various special things.
This PR removes Baldrdash ABI support, the `fallthrough_return`
instruction, and pulls some threads to remove now-unused bits as a
result of those two, with the understanding that the SpiderMonkey folks
will build new functionality as needed in the future and we can perhaps
find cleaner abstractions to make it all work.
[1] https://bugzilla.mozilla.org/show_bug.cgi?id=1781425
* Review feedback.
* Fix (?) DWARF debug tests: add `--disable-cache` to wasmtime invocations.
The debugger tests invoke `wasmtime` from within each test case under
the control of a debugger (gdb or lldb). Some of these tests started to
inexplicably fail in CI with unrelated changes, and the failures were
only inconsistently reproducible locally. It seems to be cache related:
if we disable cached compilation on the nested `wasmtime` invocations,
the tests consistently pass.
* Review feedback.
For wasm programs using SIMD vector types, the type known at function
entry or exit may not match the type used within the body of the
function, so we have to bitcast them. We have to check all calls and
returns for this condition, which involves comparing a subset of a
function's signature with the CLIF types we're trying to use. Currently,
this check heap-allocates a short-lived Vec for the appropriate subset
of the signature.
But most of the time none of the values need a bitcast. So this patch
avoids allocating unless at least one bitcast is actually required, and
only saves the pointers to values that need fixing up. I leaned heavily
on iterators to keep space usage constant until we discover allocation
is necessary after all.
I don't think it's possible to eliminate the allocation entirely,
because the function signature we're examining is borrowed from the
FuncBuilder, but we need to mutably borrow the FuncBuilder to insert the
bitcast instructions. Fortunately, the FromIterator implementation for
Vec doesn't reserve any heap space if the iterator is empty, so we can
unconditionally collect into a Vec and still avoid unnecessary
allocations.
Since the relationship between a function signature and a list of CLIF
values is somewhat complicated, I refactored all the uses of
`bitcast_arguments` and `wasm_param_types`. Instead there's
`bitcast_wasm_params` and `bitcast_wasm_returns` which share a helper
that combines the previous pair of functions into one.
According to DHAT, when compiling the Sightglass Spidermonkey benchmark,
this avoids 52k allocations averaging about 9 bytes each, which are
freed on average within 2k instructions.
Most Sightglass benchmarks, including Spidermonkey, show no performance
difference with this change. Only one has a slowdown, and it's small:
compilation :: nanoseconds :: benchmarks/shootout-matrix/benchmark.wasm
Δ = 689373.34 ± 593720.78 (confidence = 99%)
lazy-bitcast.so is 0.94x to 1.00x faster than main-e121c209f.so!
main-e121c209f.so is 1.00x to 1.06x faster than lazy-bitcast.so!
[19741713 21375844.46 32976047] lazy-bitcast.so
[19345471 20686471.12 30872267] main-e121c209f.so
But several Sightglass benchmarks have notable speed-ups, with smaller
improvements for shootout-ed25519, meshoptimizer, and pulldown-cmark,
and larger ones as follows:
compilation :: nanoseconds :: benchmarks/bz2/benchmark.wasm
Δ = 20071545.47 ± 2950014.92 (confidence = 99%)
lazy-bitcast.so is 1.26x to 1.36x faster than main-e121c209f.so!
main-e121c209f.so is 0.73x to 0.80x faster than lazy-bitcast.so!
[55995164 64849257.68 89083031] lazy-bitcast.so
[79382460 84920803.15 98016185] main-e121c209f.so
compilation :: nanoseconds :: benchmarks/blake3-scalar/benchmark.wasm
Δ = 16620780.61 ± 5395162.13 (confidence = 99%)
lazy-bitcast.so is 1.14x to 1.28x faster than main-e121c209f.so!
main-e121c209f.so is 0.77x to 0.88x faster than lazy-bitcast.so!
[54604352 79877776.35 103666598] lazy-bitcast.so
[94011835 96498556.96 106200091] main-e121c209f.so
compilation :: nanoseconds :: benchmarks/intgemm-simd/benchmark.wasm
Δ = 36891254.34 ± 12403663.50 (confidence = 99%)
lazy-bitcast.so is 1.12x to 1.24x faster than main-e121c209f.so!
main-e121c209f.so is 0.79x to 0.90x faster than lazy-bitcast.so!
[131610845 201289587.88 247341883] lazy-bitcast.so
[232065032 238180842.22 250957563] main-e121c209f.so
This commit updates the wasm-tools family of crates, notably pulling in
the refactorings and updates from bytecodealliance/wasm-tools#621 for
the latest iteration of the component model. This commit additionally
updates all support for the component model for these changes, notably:
* Many bits and pieces of type information was refactored. Many
`FooTypeIndex` namings are now `TypeFooIndex`. Additionally there is
now `TypeIndex` as well as `ComponentTypeIndex` for the two type index
spaces in a component.
* A number of new sections are now processed to handle the core and
component variants.
* Internal maps were split such as the `funcs` map into
`component_funcs` and `funcs` (same for `instances`).
* Canonical options are now processed individually instead of one bulk
`into` definition.
Overall this was not a major update to the internals of handling the
component model in Wasmtime. Instead this was mostly a surface-level
refactoring to make sure that everything lines up with the new binary
format for components.
* All text syntax used in tests was updated to the new syntax.
* Update wasm-tools crates
This commit updates the wasm-tools family of crates as used in Wasmtime.
Notably this brings in the update which removes module linking support
as well as a number of internal refactorings around names and such
within wasmparser itself. This updates all of the wasm translation
support which binds to wasmparser as appropriate.
Other crates all had API-compatible changes for at least what Wasmtime
used so no further changes were necessary beyond updating version
requirements.
* Update a test expectation
This also paves the way for unifying TargetIsa and MachBackend, since now they map one to one. In theory the two traits could be merged, which would be nice to limit the number of total concepts. Also they have quite different responsibilities, so it might be fine to keep them separate.
Interestingly, this PR started as removing RegInfo from the TargetIsa trait since the adapter returned a dummy value there. From the fallout, noticed that all Display implementations didn't needed an ISA anymore (since these were only used to render ISA specific registers). Also the whole family of RegInfo / ValueLoc / RegUnit was exclusively used for the old backend, and these could be removed. Notably, some IR instructions needed to be removed, because they were using RegUnit too: this was the oddball of regfill / regmove / regspill / copy_special, which were IR instructions inserted by the old regalloc. Fare thee well!
* Move `CompiledFunction` into wasmtime-cranelift
This commit moves the `wasmtime_environ::CompiledFunction` type into the
`wasmtime-cranelift` crate. This type has lots of Cranelift-specific
pieces of compilation and doesn't need to be generated by all Wasmtime
compilers. This replaces the usage in the `Compiler` trait with a
`Box<Any>` type that each compiler can select. Each compiler must still
produce a `FunctionInfo`, however, which is shared information we'll
deserialize for each module.
The `wasmtime-debug` crate is also folded into the `wasmtime-cranelift`
crate as a result of this commit. One possibility was to move the
`CompiledFunction` commit into its own crate and have `wasmtime-debug`
depend on that, but since `wasmtime-debug` is Cranelift-specific at this
time it didn't seem like it was too too necessary to keep it separate.
If `wasmtime-debug` supports other backends in the future we can
recreate a new crate, perhaps with it refactored to not depend on
Cranelift.
* Move wasmtime_environ::reference_type
This now belongs in wasmtime-cranelift and nowhere else
* Remove `Type` reexport in wasmtime-environ
One less dependency on `cranelift-codegen`!
* Remove `types` reexport from `wasmtime-environ`
Less cranelift!
* Remove `SourceLoc` from wasmtime-environ
Change the `srcloc`, `start_srcloc`, and `end_srcloc` fields to a custom
`FilePos` type instead of `ir::SourceLoc`. These are only used in a few
places so there's not much to lose from an extra abstraction for these
leaf use cases outside of cranelift.
* Remove wasmtime-environ's dep on cranelift's `StackMap`
This commit "clones" the `StackMap` data structure in to
`wasmtime-environ` to have an independent representation that that
chosen by Cranelift. This allows Wasmtime to decouple this runtime
dependency of stack map information and let the two evolve
independently, if necessary.
An alternative would be to refactor cranelift's implementation into a
separate crate and have wasmtime depend on that but it seemed a bit like
overkill to do so and easier to clone just a few lines for this.
* Define code offsets in wasmtime-environ with `u32`
Don't use Cranelift's `binemit::CodeOffset` alias to define this field
type since the `wasmtime-environ` crate will be losing the
`cranelift-codegen` dependency soon.
* Commit to using `cranelift-entity` in Wasmtime
This commit removes the reexport of `cranelift-entity` from the
`wasmtime-environ` crate and instead directly depends on the
`cranelift-entity` crate in all referencing crates. The original reason
for the reexport was to make cranelift version bumps easier since it's
less versions to change, but nowadays we have a script to do that.
Otherwise this encourages crates to use whatever they want from
`cranelift-entity` since we'll always depend on the whole crate.
It's expected that the `cranelift-entity` crate will continue to be a
lean crate in dependencies and suitable for use at both runtime and
compile time. Consequently there's no need to avoid its usage in
Wasmtime at runtime, since "remove Cranelift at compile time" is
primarily about the `cranelift-codegen` crate.
* Remove most uses of `cranelift-codegen` in `wasmtime-environ`
There's only one final use remaining, which is the reexport of
`TrapCode`, which will get handled later.
* Limit the glob-reexport of `cranelift_wasm`
This commit removes the glob reexport of `cranelift-wasm` from the
`wasmtime-environ` crate. This is intended to explicitly define what
we're reexporting and is a transitionary step to curtail the amount of
dependencies taken on `cranelift-wasm` throughout the codebase. For
example some functions used by debuginfo mapping are better imported
directly from the crate since they're Cranelift-specific. Note that
this is intended to be a temporary state affairs, soon this reexport
will be gone entirely.
Additionally this commit reduces imports from `cranelift_wasm` and also
primarily imports from `crate::wasm` within `wasmtime-environ` to get a
better sense of what's imported from where and what will need to be
shared.
* Extract types from cranelift-wasm to cranelift-wasm-types
This commit creates a new crate called `cranelift-wasm-types` and
extracts type definitions from the `cranelift-wasm` crate into this new
crate. The purpose of this crate is to be a shared definition of wasm
types that can be shared both by compilers (like Cranelift) as well as
wasm runtimes (e.g. Wasmtime). This new `cranelift-wasm-types` crate
doesn't depend on `cranelift-codegen` and is the final step in severing
the unconditional dependency from Wasmtime to `cranelift-codegen`.
The final refactoring in this commit is to then reexport this crate from
`wasmtime-environ`, delete the `cranelift-codegen` dependency, and then
update all `use` paths to point to these new types.
The main change of substance here is that the `TrapCode` enum is
mirrored from Cranelift into this `cranelift-wasm-types` crate. While
this unfortunately results in three definitions (one more which is
non-exhaustive in Wasmtime itself) it's hopefully not too onerous and
ideally something we can patch up in the future.
* Get lightbeam compiling
* Remove unnecessary dependency
* Fix compile with uffd
* Update publish script
* Fix more uffd tests
* Rename cranelift-wasm-types to wasmtime-types
This reflects the purpose a bit more where it's types specifically
intended for Wasmtime and its support.
* Fix publish script
* Move all trampoline compilation to `wasmtime-cranelift`
This commit moves compilation of all the trampolines used in wasmtime
behind the `Compiler` trait object to live in `wasmtime-cranelift`. The
long-term goal of this is to enable depending on cranelift *only* from
the `wasmtime-cranelift` crate, so by moving these dependencies we
should make that a little more flexible.
* Fix windows build
Cranelift crates have historically been much more verbose with debug-level
logging than most other crates in the Rust ecosystem. We log things like how
many parameters a basic block has, the color of virtual registers during
regalloc, etc. Even for Cranelift hackers, these things are largely only useful
when hacking specifically on Cranelift and looking at a particular test case,
not even when using some Cranelift embedding (such as Wasmtime).
Most of the time, when people want logging for their Rust programs, they do
something like:
RUST_LOG=debug cargo run
This means that they get all that mostly not useful debug logging out of
Cranelift. So they might want to disable logging for Cranelift, or change it to
a higher log level:
RUST_LOG=debug,cranelift=info cargo run
The problem is that this is already more annoying to type that `RUST_LOG=debug`,
and that Cranelift isn't one single crate, so you actually have to play
whack-a-mole with naming all the Cranelift crates off the top of your head,
something more like this:
RUST_LOG=debug,cranelift=info,cranelift_codegen=info,cranelift_wasm=info,...
Therefore, we're changing most of the `debug!` logs into `trace!` logs: anything
that is very Cranelift-internal, unlikely to be useful/meaningful to the
"average" Cranelift embedder, or prints a message for each instruction visited
during a pass. On the other hand, things that just report a one line statistic
for a whole pass, for example, are left as `debug!`. The more verbose the log
messages are, the higher the bar they must clear to be `debug!` rather than
`trace!`.
* Consume fuel during function execution
This commit adds codegen infrastructure necessary to instrument wasm
code to consume fuel as it executes. Currently nothing is really done
with the fuel, but that'll come in later commits.
The focus of this commit is to implement the codegen infrastructure
necessary to consume fuel and account for fuel consumed correctly.
* Periodically check remaining fuel in wasm JIT code
This commit enables wasm code to periodically check to see if fuel has
run out. When fuel runs out an intrinsic is called which can do what it
needs to do in the result of fuel running out. For now a trap is thrown
to have at least some semantics in synchronous stores, but another
planned use for this feature is for asynchronous stores to periodically
yield back to the host based on fuel running out.
Checks for remaining fuel happen in the same locations as interrupt
checks, which is to say the start of the function as well as loop
headers.
* Improve codegen by caching `*const VMInterrupts`
The location of the shared interrupt value and fuel value is through a
double-indirection on the vmctx (load through the vmctx and then load
through that pointer). The second pointer in this chain, however, never
changes, so we can alter codegen to account for this and remove some
extraneous load instructions and hopefully reduce some register
pressure even maybe.
* Add tests fuel can abort infinite loops
* More fuzzing with fuel
Use fuel to time out modules in addition to time, using fuzz input to
figure out which.
* Update docs on trapping instructions
* Fix doc links
* Fix a fuzz test
* Change setting fuel to adding fuel
* Fix a doc link
* Squelch some rustdoc warnings
In some cases, it is useful to do some work at entry to or exit from a
Cranelift function translated from WebAssembly. This PR adds two
optional methods to the `FuncEnvironment` trait to do just this,
analogous to the pre/post-hooks on operators that already exist.
This PR also includes a drive-by compilation fix due to the latest
nightly wherein `.is_empty()` on a `Range` ambiguously refers to either
the `Range` impl or the `ExactSizeIterator` impl and can't resolve.
* Validate modules while translating
This commit is a change to cranelift-wasm to validate each function body
as it is translated. Additionally top-level module translation functions
will perform module validation. This commit builds on changes in
wasmparser to perform module validation interwtwined with parsing and
translation. This will be necessary for future wasm features such as
module linking where the type behind a function index, for example, can
be far away in another module. Additionally this also brings a nice
benefit where parsing the binary only happens once (instead of having an
up-front serial validation step) and validation can happen in parallel
for each function.
Most of the changes in this commit are plumbing to make sure everything
lines up right. The major functional change here is that module
compilation should be faster by validating in parallel (or skipping
function validation entirely in the case of a cache hit). Otherwise from
a user-facing perspective nothing should be that different.
This commit does mean that cranelift's translation now inherently
validates the input wasm module. This means that the Spidermonkey
integration of cranelift-wasm will also be validating the function as
it's being translated with cranelift. The associated PR for wasmparser
(bytecodealliance/wasmparser#62) provides the necessary tools to create
a `FuncValidator` for Gecko, but this is something I'll want careful
review for before landing!
* Read function operators until EOF
This way we can let the validator take care of any issues with
mismatched `end` instructions and/or trailing operators/bytes.
* Allow different Cranelift IR types to be used for different Wasm reference
types.
* Do not assume that all Wasm reference types are always a Cranelift IR
reference type. For example, `funcref`s might not need GC in some
implementations, and can therefore be represented with a pointer rather than a
reference type.
* Manually rename BasicBlock to BlockPredecessor
BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.
Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.
I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.
* Manually rename SSABuilder block types to avoid conflict
SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.
* Automatically rename 'Ebb' to 'Block' in *.rs
* Automatically rename 'EBB' to 'block' in *.rs
* Automatically rename 'ebb' to 'block' in *.rs
* Automatically rename 'extended basic block' to 'basic block' in *.rs
* Automatically rename 'an basic block' to 'a basic block' in *.rs
* Manually update comment for `Block`
`Block`'s wikipedia article required an update.
* Automatically rename 'an `Block`' to 'a `Block`' in *.rs
* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs
* Automatically rename 'ebb' to 'block' in *.clif
* Manually rename clif constant that contains 'ebb' as substring to avoid conflict
* Automatically rename filecheck uses of 'EBB' to 'BB'
'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'
* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif
* Automatically rename 'an block' to 'a block' in *.clif
* Fix broken testcase when function name length increases
Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.
* Use `is_wasm_parameter` in translating wasm calls
Added in #1329 it's now possible for multiple parameters to be non-wasm
parameters, so the previous `param_types` method is no longer suitable
for acquiring all wasm-related parameters, rather then `FuncEnvironment`
must be consulted. This removes usage of `param_types()` as a method
from the wasm translation and instead adds a custom method inline for
filtering the parameters based on `is_wasm_parameter`.
* Apply feedback
* Run rustfmt
* Don't require `mut`
* Run rustfmt
* Correctly count the number of wasm parameters.
Following up on #1329, this further replaces `num_normal_params` with a function
which calls `is_wasm_parameter` to correctly count the number of wasm
parameters a function has.
* Move is_wasm_parameter's implementation into the trait.
This provides a more flexible way to allow embedding to tell
cranelift-wasm which function parameters are hidden, and which should be
translated as wasm user variables.
This replaces https://github.com/bytecodealliance/cranelift/pull/1086.
* Bitcast vectors immediately before a return
* Bitcast vectors immediately before a block end
* Use helper function for bitcasting arguments
* Add FuncTranslationState::peekn_mut; allows mutating of peeked values
* Bitcast values in place, avoiding an allocation
Also, retrieves the correct EBB header types for bitcasting on Operator::End.
* Bitcast values of a function with no explicit Wasm return instruction
* Add Signature::return_types method
This eliminates some duplicate code and avoids extra `use`s of `Vec`.
* Add Signature::param_types method; only collect normal parameters in both this and Signature::return_types
* Move normal_args to Signature::num_normal_params method
This matches the organization of the other Signature::num_*_params methods.
* Bitcast values of Operator::Call and Operator::CallIndirect
* Add DataFlowGraph::ebb_param_types
* Bitcast values of Operator::Br and Operator::BrIf
* Bitcast values of Operator::BrTable
* cranelift-wasm: replace `WasmTypesMap` with `ModuleTranslationState`
The `ModuleTranslationState` contains information decoded from the Wasm module
that must be referenced during each Wasm function's translation.
This is only for data that is maintained by `cranelift-wasm` itself, as opposed
to being maintained by the embedder. Data that is maintained by the embedder is
represented with `ModuleEnvironment`.
A `ModuleTranslationState` is returned by `translate_module`, and can then be
used when translating functions from that module.
* cranelift-wasm: rename `TranslationState` to `FuncTranslationState`
To disambiguate a bit with the new `ModuleTranslationState`.
* cranelift-wasm: Reorganize the internal `state` module into submodules
One module for the `ModuleTranslationState` and another for the
`FuncTranslationState`.
* cranelift-wasm: replace `FuncTranslator` with methods on `ModuleTranslationState`
`FuncTranslator` was two methods that always took ownership of `self`, so it
didn't really make sense as an object as opposed to two different functions, or
in this case methods on the object that actually persists for a longer time.
I think this improves ergonomics nicely.
Before:
```rust
let module_translation = translate_module(...)?;
for body in func_bodies {
let mut translator = FuncTranslator::new();
translator.translate(body, ...)?;
}
```
After:
```rust
let module_translation = translate_module(...)?;
for body in func_bodies {
module_translation.translate_func(body, ...)?;
}
```
Note that this commit does not remove `FuncTranslator`. It still exists, but is
just a wrapper over the `ModuleTranslationState` methods, and it is marked
deprecated, so that downstream users get a heads up. This should make the
transition easier.
* Revert "cranelift-wasm: replace `FuncTranslator` with methods on `ModuleTranslationState`"
This reverts commit 075f9ae933bcaae39348b61287c8f78a4009340d.
This commit introduces initial support for multi-value Wasm. Wasm blocks and
calls can now take and return an arbitrary number of values.
The encoding for multi-value blocks means that we need to keep the contents of
the "Types" section around when translating function bodies. To do this, we
introduce a `WasmTypesMap` type that maps the type indices to their parameters
and returns, construct it when parsing the "Types" section, and shepherd it
through a bunch of functions and methods when translating function bodies.
`VisibleTranslationState` was a wrapper around a `TranslationState` that was
meant to public API consumers outside of this crate. However, the internal
`TranslationState` and all its methods were still publicly exposed! This commit
simplifies and remedies the situation by combining them into a single
`TranslationState` type. Most of its methods are only `pub(crate)` now, not
visible to the entire world. The only methods that are `pub` are the ones that
`VisibleTranslationState` exposed.
-Add resumable_trap, safepoint, isnull, and null instructions
-Add Stackmap struct and StackmapSink trait
Co-authored-by: Mir Ahmed <mirahmed753@gmail.com>
Co-authored-by: Dan Gohman <sunfish@mozilla.com>
* [wasm] return a WasmResult from `declare_table_elements`
This method in particular needs to accommodate failure because any table index other than zero is
currently invalid.
* [wasm] additional failure handling improvements
- Adds `WasmResult<()>` as the return type for most of the `ModuleEnvironment` methods that
previously returned nothing.
- Replaces some panics with `WasmError::Unsupported` now that the methods can return a result.
- Adds a `wasm_unsupported!()` macro for early returns with a formatted unsupported message.