Previously, the block successor accumulation and the blockparam branch
arg setup were decoupled. The lowering backend implicitly specified
the order of successor edges via its `MachTerminator` enum on the last
instruction in the block, while the `Lower` toplevel
machine-independent driver set up blockparam branch args in the edge
order seen in CLIF.
In some cases, these orders did not match -- for example, when the
conditional branch depended on an FP condition that was implemented by
swapping taken/not-taken edges and inverting the condition code.
This PR refactors the successor handling to be centralized in `Lower`
rather than flow through the terminator `MachInst`, and adds a
successor block and its blockparam args at the same time, ensuring the
orders match.
Merge Mov32 and Mov64 into a single instruction parameterized by a new
OperandSize field. Also combine the Mov[K,N,Z] into a single instruction
with a new opcode to select between the operations.
Copyright (c) 2022, Arm Limited.
This PR switches Cranelift over to the new register allocator, regalloc2.
See [this document](https://gist.github.com/cfallin/08553421a91f150254fe878f67301801)
for a summary of the design changes. This switchover has implications for
core VCode/MachInst types and the lowering pass.
Overall, this change brings improvements to both compile time and speed of
generated code (runtime), as reported in #3942:
```
Benchmark Compilation (wallclock) Execution (wallclock)
blake3-scalar 25% faster 28% faster
blake3-simd no diff no diff
meshoptimizer 19% faster 17% faster
pulldown-cmark 17% faster no diff
bz2 15% faster no diff
SpiderMonkey, 21% faster 2% faster
fib(30)
clang.wasm 42% faster N/A
```
This change moves the majority of the lowerings for CLIF's `load`
instruction over to ISLE. To do so, it also migrates the previous
mechanism for creating an `Amode` (`lower_to_amode`) to several ISLE
rules (see `to_amode`).
This change removes all variants of `load*_complex` and `store*_complex`
from Cranelift; this is a breaking change to the instructions exposed by
CLIF. The complete list of instructions removed is: `load_complex`,
`store_complex`, `uload8_complex`, `sload8_complex`, `istore8_complex`,
`sload8_complex`, `uload16_complex`, `sload16_complex`,
`istore16_complex`, `uload32_complex`, `sload32_complex`,
`istore32_complex`, `uload8x8_complex`, `sload8x8_complex`,
`sload16x4_complex`, `uload16x4_complex`, `uload32x2_complex`,
`sload32x2_complex`.
The rationale for this removal is that the Cranelift backend now has the
ability to pattern-match multiple upstream additions in order to
calculate the address to access. Previously, this was not possible so
the `*_complex` instructions were needed. Over time, these instructions
have fallen out of use in this repository, making the additional
overhead of maintaining them a chore.
* x64: port scalar `fcmp` to ISLE
Implement the CLIF lowering for the `fcmp` to ISLE. This adds a new
type-matcher, `ty_scalar_float`, for detecting uses of `F32` and `F64`.
* isle: rename `vec128` to `ty_vec12`
This refactoring changes the name of the `vec128` matcher function to
follow the `ty_*` convention of the other type matchers. It also makes
the helper an inline function call.
* x64: port vector `fcmp` to ISLE
The current definition of `ValueSlice` is not usable, since any call to
a constructor returning a `ValueSlice` will extend the mutable borrow
on the context taken by the constructor call, with the result that it
cannot be passed to any other constructor ever.
Re-implement `ValueSlice` as a pair of a `ValueList` identifer plus an
offset into the list. This type can simply be copied without requiring
a borrow on the context.
This changes the output of the `lower` constructor from a
`ValueRegs` to a new `InstOutput` type, which is a vector
of `ValueRegs`.
Code in `lower_common` is updated to use this new type to
handle instructions with multiple outputs. All back-ends
are updated to use the new type.
This PR makes use of the new implicit-conversion feature of the ISLE DSL
that was introduced in #3807 in order to make the lowering rules
significantly simpler and more concise.
The basic idea is to eliminate the repetitive and mechanical use of
terms that convert from one type to another when there is only one real
way to do the conversion -- for example, to go from a `WritableReg` to a
`Reg`, the only sensible way is to use `writable_reg_to_reg`.
This PR generally takes any term of the form "A_to_B" and makes it an
automatic conversion, as well as some others that are similar in spirit.
The notable exception to the pure-value-convsion category is the
`put_in_reg` family of operations, which actually do have side-effects.
However, as noted in the doc additions in #3807, this is fine as long as
the side-effects are idempotent. And on balance, making `put_in_reg`
automatic is a significant clarity win -- together with other operand
converters, it enables rules like:
```
;; Add two registers.
(rule (lower (has_type (fits_in_64 ty)
(iadd x y)))
(add ty x y))
```
There may be other converters that we could define to make the rules
even simpler; we can make such improvements as we think of them, but
this should be a good start!
* x64: port `select` using an FP comparison to ISLE
This change includes quite a few interlocking parts, required mainly by
the current x64 conventions in ISLE:
- it adds a way to emit a `cmove` with multiple OR-ing conditions;
because x64 ISLE cannot currently safely emit a comparison followed
by several jumps, this adds `MachInst::CmoveOr` and
`MachInst::XmmCmoveOr` macro instructions. Unfortunately, these macro
instructions hide the multi-instruction sequence in `lower.isle`
- to properly keep track of what instructions consume and produce
flags, @cfallin added a way to pass around variants of
`ConsumesFlags` and `ProducesFlags`--these changes affect all
backends
- then, to lower the `fcmp + select` CLIF, this change adds several
`cmove*_from_values` helpers that perform all of the awkward
conversions between `Value`, `ValueReg`, `Reg`, and `Gpr/Xmm`; one
upside is that now these lowerings have much-improved documentation
explaining why the various `FloatCC` and `CC` choices are made the
the way they are.
Co-authored-by: Chris Fallin <chris@cfallin.org>
Combine the two opcodes into one and pass and add an OperandSize
field to these instructions, as well as an ISLE helper to perform
the conversion from Type.
This saves us from having having to write ISLE helpers to select the
correct opcode, based on type, and reduces the amount of code needed
for emission.
Copyright (c) 2022, Arm Limited.
Addresses #3809: when we are asked to create a Cranelift backend with
shared flags that indicate support for SIMD, we should check that the
ISA level needed for our SIMD lowerings is present.
Add accessors to prelude.isle to access data fields of
`func_addr` and `symbol_value` instructions.
These are based on similar versions I had added to the s390x
back-end, but are a bit more straightforward to use.
- func_ref_data: Extract SigRef, ExternalName, and RelocDistance
fields given a FuncRef.
- symbol_value_data: Extract ExternalName, RelocDistance, and
offset fields given a GlobalValue representing a Symbol.
- reloc_distance_near: Test for RelocDistance::Near.
The s390x back-end is changed to use these common versions.
Note that this exposed a bug in common isle code: This extractor:
(extractor (load_sym inst)
(and inst
(load _ (def_inst (symbol_value
(symbol_value_data _
(reloc_distance_near) offset)))
(i64_from_offset
(memarg_symbol_offset_sum <offset _)))))
would raise an assertion in sema.rs due to a supposed cycle in
extractor definitions. But there was no actual cycle, it was
simply that the extractor tree refers twice to the `insn_data`
extractor (once via the `load` and once via the `symbol_value`
extractor). Fixed by checking for pre-existing definitions only
along one path in the tree, not across the whole tree.
This primary motivation of this large commit (apologies for its size!) is to
introduce `Gpr` and `Xmm` newtypes over `Reg`. This should help catch
difficult-to-diagnose register class mixup bugs in x64 lowerings.
But having a newtype for `Gpr` and `Xmm` themselves isn't enough to catch all of
our operand-with-wrong-register-class bugs, because about 50% of operands on x64
aren't just a register, but a register or memory address or even an
immediate! So we have `{Gpr,Xmm}Mem[Imm]` newtypes as well.
Unfortunately, `GprMem` et al can't be `enum`s and are therefore a little bit
noisier to work with from ISLE. They need to maintain the invariant that their
registers really are of the claimed register class, so they need to encapsulate
the inner data. If they exposed the underlying `enum` variants, then anyone
could just change register classes or construct a `GprMem` that holds an XMM
register, defeating the whole point of these newtypes. So when working with
these newtypes from ISLE, we rely on external constructors like `(gpr_to_gpr_mem
my_gpr)` instead of `(GprMem.Gpr my_gpr)`.
A bit of extra lines of code are included to add support for register mapping
for all of these newtypes as well. Ultimately this is all a bit wordier than I'd
hoped it would be when I first started authoring this commit, but I think it is
all worth it nonetheless!
In the process of adding these newtypes, I didn't want to have to update both
the ISLE `extern` type definition of `MInst` and the Rust definition, so I move
the definition fully into ISLE, similar as aarch64.
Finally, this process isn't complete. I've introduced the newtypes here, and
I've made most XMM-using instructions switch from `Reg` to `Xmm`, as well as
register class-converting instructions, but I haven't moved all of the GPR-using
instructions over to the newtypes yet. I figured this commit was big enough as
it was, and I can continue the adoption of these newtypes in follow up commits.
Part of #3685.
Even though the implementation of emit and emit_safepoint may
be platform-specific, the interface ought to be common so that
other code in prelude.isle may safely call these constructors.
This patch moves the definition of emit (from all platforms)
and emit_safepoint (s390x only) to prelude.isle. This required
adding an emit_safepoint implementation to aarch64 and x64 as
well - the latter is still a stub as special move mitosis
handling will be required.
Change the implementation of emitted_insts in IsleContext from
a plain vector of instructions into a vector of tuples, where
the second element is a boolean that indicates whether this
instruction should be emitted as a safepoint.
This allows targets to emit safepoint insns via ISLE.
Attempt to match a Jump instruction in ISLE will currently lead to the
generated files not compiling. This is because the definition of the
InstructionData enum in clif.isle does not match the actual type used
in Rust code.
Specifically, clif.isle erroneously omits the ValueList variable-length
argument entry if the format does not use a typevar operand. This is
the case for Jump and a few other formats. The problem is caused by
a bug in the gen_isle routine in meta/src/gen_inst.rs.
In preparing to move the s390x back-end to ISLE, I noticed a few
missing pieces in the common prelude code. This patch:
- Defines the reference types $R32 / $R64.
- Provides a trap_code_bad_conversion_to_integer helper.
- Provides an avoid_div_traps helper. This requires passing the
generic flags in addition to the ISA-specifc flags into the
ISLE lowering context.
This commit migrates these existing instructions to ISLE from the manual
lowerings implemented today. This was mostly straightforward but while I
was at it I fixed what appeared to be broken translations for I{8,16}
for `clz`, `cls`, and `ctz`. Previously the lowerings would produce
results as-if the input was 32-bits, but now I believe they all
correctly account for the bit-width.
This patch makes spillslot allocation, spilling and reloading all based
on register class only. Hence when we have a 32- or 64-bit value in a
128-bit XMM register on x86-64 or vector register on aarch64, this
results in larger spillslots and spills/restores.
Why make this change, if it results in less efficient stack-frame usage?
Simply put, it is safer: there is always a risk when allocating
spillslots or spilling/reloading that we get the wrong type and make the
spillslot or the store/load too small. This was one contributing factor
to CVE-2021-32629, and is now the source of a fuzzbug in SIMD code that
puns an arbitrary user-controlled vector constant over another
stackslot. (If this were a pointer, that could result in RCE. SIMD is
not yet on by default in a release, fortunately.
In particular, we have not been particularly careful about using moves
between values of different types, for example with `raw_bitcast` or
with certain SIMD operations, and such moves indicate to regalloc.rs
that vregs are in equivalence classes and some arbitrary vreg in the
class is provided when allocating the spillslot or spilling/reloading.
Since regalloc.rs does not track actual type, and since we haven't been
careful about moves, we can't really trust this "arbitrary vreg in
equivalence class" to provide accurate type information.
In the fix to CVE-2021-32629 we fixed this for integer registers by
always spilling/reloading 64 bits; this fix can be seen as the analogous
change for FP/vector regs.
* aarch64: Use smaller instruction helpers in ISLE
This commit moves the aarch64 backend's ISLE to be more similar to the
x64 backend's ISLE where one-liner instruction builders are used for
various forms of instructions instead of always using the
constructor-per-variant-of-`Inst`. Overall I think this change worked
out quite well and sets up some naming idioms as well for various forms
of instructions.
* rebase conflict
Fixes#3609. It turns out that `sha2` is a nontrivial dependency for
Cranelift in many contexts, partly because it pulls in a number of other
crates as well.
One option is to remove the hash check under certain circumstances, as
implemented in #3616. However, this is undesirable for other reasons:
having different dependency options in Wasmtime in particular for
crates.io vs. local builds is not really possible, and so either we
still have the higher build cost in Wasmtime, or we turn off the checks
by default, which goes against the original intent of ensuring developer
safety (no mysterious stale-source bugs).
This PR uses `SipHash` instead, which is built into the standard
library. `SipHash` is deprecated, but it's fixed and deterministic
(across runs and across Rust versions), which is what we need, unlike
the suggested replacement `std::collections::hash_map::DefaultHasher`.
The result is only 64 bits, and is not cryptographically secure, but we
never needed that; we just need a simple check to indicate when we
forget a `rebuild-isle`.
This commit translates the `rotl` and `rotr` lowerings already existing
to ISLE. The port was relatively straightforward with the biggest
changing being the instructions generated around i128 rotl/rotr
primarily due to register changes.