Change the result type for the bit-counting instructions from a fixed i8
to the iB type variable which is the type of the input. This matches the
convention in WebAssembly, and at least Intel's instructions will set a
full register's worth of count result, even if it is always < 64.
Duplicate the Intel 'ur' encoding recipe into 'umr' and 'urm' variants
corresponding to the RM and MR encoding variants. The difference is
which register is encoded as 'reg' and which is 'r/m' in the ModR/M
byte. A 'mov' register copy uses the MR variant, a unary popcnt uses the
RM variant.
Add a TailRecipe.rex() method which creates an encoding recipe with a
REX prefix.
Define I64 encodings with REX.W for i64 operations and with/without REX
for i32 ops. Only test the with-REX encodings for now. We don't yet have
an instruction shrinking pass that can select the non-REX encodings.
This is just a rough sketch to get us started. There are bound to be
some issues.
This also legalizes signatures for x86-32, but probably not correctly.
It's basically implementing the x86-64 ABI for 32-bit.
* Function names should start with %
* Create FunctionName from string
* Implement displaying of FunctionName as %nnnn with fallback to #xxxx
* Run rustfmt and fix FunctionName::with_string in parser
* Implement FunctionName::new as a generic function
* Binary function names should start with #
* Implement NameRepr for function name
* Fix examples in docs to reflect that function names start with %
* Rebase and fix filecheck tests
We don't support the full set of Intel addressing modes yet. So far we
have:
- Register indirect, no displacement.
- Register indirect, 8-bit signed displacement.
- Register indirect, 32-bit signed displacement.
The SIB addressing modes will need new Cretonne instruction formats to
represent.
These instructions have a fixed register constraint; the shift amount is
passed in CL.
Add meta language syntax so a fixed register can be specified as
"GPR.rcx".
Tabulate the Intel opcode representations and implement an OP() function
which computes the encoding bits.
Implement the single-byte opcode with a reg-reg ModR/M byte.