Instructions will multiple type variables can now use `any` to indicate
encodings that don't care about the value of a secondary type variable:
ishl.i32.any instead of ishl.i32.i32
This is only allowed for secondary type variables (which are converted
to instruction predicates). The controlling type variable must still be
fully specified because it is used to key the encoding tables.
Predicate numbers are available in the maps
isa.settings.predicate_number and isa.instp_number instead.
Like the name field, predicate numbers don't interact well with
unique_pred().
The name of a predicate was only ever used for named settings that are
computed as a boolean expression of other settings.
- Record the names of these settings in named_predicates instead.
- Remove the name field from all predicates.
Named predicates does not interact well with the interning of predicates
through isa.unique_pred().
The encoding tables are keyed by the controlling type variable only. We
need to distinguish different encodings for instructions with multiple
type variables.
Add a TypePredicate instruction predicate which can check the type of an
instruction value operand. Combine type checks into the instruction
predicate for instructions with more than one type variable.
Add Intel encodings for fcvt_from_sint.f32.i64 which can now be
distinguished from fcvt_from_sint.f32.i32.
It turns out that most encoding predicates are expressed as recipe
predicates. This means that the encoding tables can be more compact
since we can check the recipe predicate separately from individual
instruction predicates, and the recipe number is already present in the
table.
- Don't combine recipe and encoding-specific predicates when creating an
Encoding. Keep them separate.
- Generate a table of recipe predicates with function pointers. Many of
these are null.
- Check any recipe predicate before accepting a recipe+bits pair.
This has the effect of making almost all instruction predicates
CODE_ALWAYS.
When an instruction doesn't have a valid encoding for the target ISA, it
needs to be legalized. Different legalization strategies can be
expressed as separate XFormGroup objects.
Make the choice of XFormGroup configurable per CPU mode, rather than
depending on a hard-coded default.
Add a CPUMode.legalize_type() method which assigns an XFormGroup to
controlling type variables and lets you set a default.
Add a `legalize` field to Level1Entry so the first-level hash table
lookup gives us the configured default legalization action for the
instruction's controlling type variable.
Fixes#11.
Presets are groups of settings and values applied at once. This is used
as a shorthand in test files, so for example "isa intel nehalem" enables
all of the CPUID bits that the Nehalem micro-architecture provides.
* Reduce code duplication in TypeConstraint subclasses; Add ConstrainWiderOrEqual to ti and to ireduce,{s,u}extend and f{promote,demote}; Fix bug in emitting constraint edges in TypeEnv.dot(); Modify runtime constraint checks to reject match when they encounter overflow
* Rename Constrain types to something shorter; Move lane_bits/lane_counts in subclasses of ValueType; Add wider_or_eq function in rust and python;
Generate code to:
- Unwrap the instruction and generate an error if the instruction format
doesn't match the recipe.
- Look up the value locations of register and stack arguments.
The recipe_* functions in the ISA binemit modules now take these
unwrapped items as arguments.
Also add an optional `emit` argument to the EncRecipe constructor which
makes it possible to provide inline Rust code snippets for code
emission. This requires a lot less boilerplate than recipe_* functions.
As per the comment in TypeEnv.normalize_tv about cancellation, whenever we create a TypeVar we must assert that there is no under/overflow. To make sure this always happen move the safety checks to TypeVar.derived() from the other helper methods
* Add more rigorous type inference and encapsulate the type inferece code in its own file (ti.py).
Add constraints accumulation during type inference, to represent constraints that cannot be expressed
using bijective derivation functions between typevars.
Add testing for new type inference code.
* Additional annotations to appease mypy
* Convert TypeSet fields to sets; Add BitSet<T> type to rust; Encode ValueTypeSets using BitSet; (still need mypy cleanup)
* nits
* cleanup nits
* forgot mypy type annotations
* rustfmt fixes
* Round 1 comments: filer b2, b4; doc comments in python; move bitset in its own toplevel module; Use Into<u32>
* fixes
* Revert comment to appease rustfmt
Add a Stack() class for specifying operand constraints for values on the
stack.
Add encoding recipes for RISC-V spill and fill instructions. Don't
implement the encoding recipe functions yet since we don't have the
stack slot layout yet.
* Skeleton simple_gvn pass.
* Basic testing infrastructure for simple-gvn.
* Add can_load and can_store flags to instructions.
* Move the replace_values function into the DataFlowGraph.
* Make InstructionData derive from Hash, PartialEq, and Eq.
* Make EntityList's hash and eq functions panic.
* Change Ieee32 and Ieee64 to store u32 and u64, respectively.
Avoid spreading u32 as a bitmask of register classes throughout the
code.
Enforce the limit of 32 register classes total. This could easily be
raised if needed.
The MAX_TOPRCS constant is the highest possible number of top-level
register classes in an ISA. The RegClassData.toprc field is always
smaller than this limit.
A top-level register class is one that has no sub-classes. It is
possible to have multiple top-level register classes in the same
register bank. For example, ARM's FPR bank has both D and Q top-level
register classes.
Number register classes such that all top-level register classes appear
as a contiguous sequence starting from 0. This will be used by the
register allocator when counting used registers per top-level register
class.
These instructions have a fixed register constraint; the shift amount is
passed in CL.
Add meta language syntax so a fixed register can be specified as
"GPR.rcx".
The register constraint for an output operand can be specified as an
integer indicating the input operand number to tie. The tied operands
must use the same register.
Generate operand constraints using ConstraintKind::Tied(n) for both the
tied operands. The n index refers to the opposite array. The input
operand refers to the outs array and vice versa.
Two new pieces of information are available for all encoding recipes:
- The size in bytes of an encoded instruction, and
- The range of a branch encoded with the recipe, if any.
In the meta language, EncRecipe takes two new constructor arguments. The
size is required for all encodings and branch_range is required for all
recipes used to encode branches.
When defining an instruction encoding, allow part of the instruction
predicate to be provided as operands on the instruction opcode:
icmp.i32(intcc.ult, x, y)
This generates an instruction predicate that checks
IntCompare.cond == IntCC::UnsignedLessThan
Compute an instruction predicate from any constant values given as
arguments for the immediate operands in an instruction pattern.
Allows for patterns like icmp.i32(intcc.ugt, x, y) or iadd_imm.i32(x, 1)
Trap these predicates in the legalizer code generator since we can't
actually handle them yet.
Consolidate the imm_members and imm_kinds into this list so the
FormatField is the single definition of these properties.
This makes it easier to access the precomputed FormatFields
parametrically, avoiding going through getattr().
This is better for type checking too.
The meta language patterns sometimes need to refer to specific values of
enumerated immediate operands. The dot syntax provides a namespaced,
typed way of doing that: icmp(intcc.ult, a, x).
Add an ast.Enumerator class for representing this kind of AST leaf node.
Add value definitions for the intcc and floatcc immediate operand kinds.
The value_list flag can be inferred from the presence of VARIABLE_ARGS
in the operand list.
The boxed_storage flag is obsolete. We don't need boxed storage anywhere
no that we have value lists instead.
Allow some flexibility in the signature matching for instruction
formats. In particular, look for a value list format as a second chance
option.
The Return, ReturnReg, and TernaryOverflow formats all fit the single
MultiAry catch-all format for instructions without immediate operands.
Instruction formats are now identified by a signature that doesn't
include the ordering of value operands relative to immediate operands.
This means that the BinaryRev instruction format becomes redundant, so
delete it. The isub_imm instruction was the only one using that format.
Rename it to irsub_imm to make it clear what it does now that it is
printed as 'irsub_imm v2, 45'.