Ported the existing implementation of `fcmp` for AArch64 to ISLE.
This also ports the `lower_vector_comparison` method to ISLE.
Copyright (c) 2022 Arm Limited
This retains `lower_amode` in the handwritten code (@akirilov-arm
reports that there is an upcoming patch to port this), but tweaks it
slightly to take a `Value` rather than an `Inst`.
* Port `Fcopysign`..``FcvtToSintSat` to ISLE (AArch64)
Ported the existing implementations of the following opcodes to ISLE on
AArch64:
- `Fcopysign`
- Also introduced missing support for `fcopysign` on vector values, as
per the docs.
- This introduces the vector encoding for the `SLI` machine
instruction.
- `FcvtToUint`
- `FcvtToSint`
- `FcvtFromUint`
- `FcvtFromSint`
- `FcvtToUintSat`
- `FcvtToSintSat`
Copyright (c) 2022 Arm Limited
* Document helpers and abstract conversion checks
Ported the existing implementations of the following opcodes for AArch64
to ISLE, and implemented support for 64-bit vectors (per the docs):
- `SwidenLow`
- `SwidenHigh`
- `UwidenLow`
- `UwidenHigh`
Also ported `WideningPairwiseDotProductS` as-is.
Copyright (c) 2022 Arm Limited
* Port `vconst` to ISLE (AArch64)
Ported the existing implementation of `vconst` to ISLE for AArch64, and
added support for 64-bit vector constants.
Also introduced 64-bit `vconst` support to the interpreter.
Copyright (c) 2022 Arm Limited
* Replace if-chains with match statements
Copyright (c) 2022 Arm Limited
Ported the existing implementations of the following opcodes on AArch64
to ISLE:
- `AvgRound`
- Also introduced support for `i64x2` vectors, as per the docs.
- `SqmulRoundSat`
Copyright (c) 2022 Arm Limited
Separates the following opcodes for AArch64 into a separate `VecALUModOp` enum,
which is emitted via the `VecRRRMod` instruction. This separates vector ALU
instructions which modify a register from instructions which write to a new register:
- `Bsl`
- `Fmla`
Addresses [a discussion](https://github.com/bytecodealliance/wasmtime/pull/4608#discussion_r937975581) in #4608.
Copyright (c) 2022 Arm Limited
* Convert `fma`, `valltrue` & `vanytrue` to ISLE (AArch64)
Ported the existing implementations of the following opcodes to ISLE on
AArch64:
- `fma`
- Introduced missing support for `fma` on vector values, as per the
docs.
- `valltrue`
- `vanytrue`
Also fixed `fcmp` on scalar values in the interpreter, and enabled
interpreter tests in `simd-fma.clif`.
This introduces the `FMLA` machine instruction.
Copyright (c) 2022 Arm Limited
* Add comments for `Fmla` and `Bsl`
Copyright (c) 2022 Arm Limited
* Port `Shuffle` to ISLE (AArch64)
Ported the existing implementation of `Shuffle` for AArch64 to ISLE.
Copyright (c) 2022 Arm Limited
* Cleanup by shadowing `rn`, `rn2`, and `_`
Copyright (c) 2022 Arm Limited
* Cranelift: Add instructions for getting the current stack/frame pointers and return address
This is the initial part of https://github.com/bytecodealliance/wasmtime/issues/4535
* x64: Remove `Amode::RbpOffset` and use `Amode::ImmReg` instead
We just special case getting operands from `Amode`s now.
* Fix s390x `get_return_address`; require `preserve_frame_pointers=true`
* Assert that `Amode::ImmRegRegShift` doesn't use rbp/rsp
* Handle non-allocatable registers in Amode::with_allocs
* Use "stack" instead of "r15" on s390x
* r14 is an allocatable register on s390x, so it shouldn't be used with `MovPReg`
* Cranellift: remove Baldrdash support and related features.
As noted in Mozilla's bugzilla bug 1781425 [1], the SpiderMonkey team
has recently determined that their current form of integration with
Cranelift is too hard to maintain, and they have chosen to remove it
from their codebase. If and when they decide to build updated support
for Cranelift, they will adopt different approaches to several details
of the integration.
In the meantime, after discussion with the SpiderMonkey folks, they
agree that it makes sense to remove the bits of Cranelift that exist
to support the integration ("Baldrdash"), as they will not need
them. Many of these bits are difficult-to-maintain special cases that
are not actually tested in Cranelift proper: for example, the
Baldrdash integration required Cranelift to emit function bodies
without prologues/epilogues, and instead communicate very precise
information about the expected frame size and layout, then stitched
together something post-facto. This was brittle and caused a lot of
incidental complexity ("fallthrough returns", the resulting special
logic in block-ordering); this is just one example. As another
example, one particular Baldrdash ABI variant processed stack args in
reverse order, so our ABI code had to support both traversal
orders. We had a number of other Baldrdash-specific settings as well
that did various special things.
This PR removes Baldrdash ABI support, the `fallthrough_return`
instruction, and pulls some threads to remove now-unused bits as a
result of those two, with the understanding that the SpiderMonkey folks
will build new functionality as needed in the future and we can perhaps
find cleaner abstractions to make it all work.
[1] https://bugzilla.mozilla.org/show_bug.cgi?id=1781425
* Review feedback.
* Fix (?) DWARF debug tests: add `--disable-cache` to wasmtime invocations.
The debugger tests invoke `wasmtime` from within each test case under
the control of a debugger (gdb or lldb). Some of these tests started to
inexplicably fail in CI with unrelated changes, and the failures were
only inconsistently reproducible locally. It seems to be cache related:
if we disable cached compilation on the nested `wasmtime` invocations,
the tests consistently pass.
* Review feedback.
* Cranelift: Don't `emit` inside lowering rules in aarch64
The lowering rules should be "pure" and side-effect free, using helpers defined
in `inst.isle` to perform actual side effects like emitting instructions.
* Cranelift: use 80 width for section separators in aarch64 lowering rules
Ported the existing implementation of the following Opcodes for AArch64
to ISLE:
- `Fence`
- `IsNull`
- `IsInvalid`
- `Debugtrap`
Copyright (c) 2022 Arm Limited
* cranelift: Reorganize test suite
Group some SIMD operations by instruction.
* cranelift: Deduplicate some shift tests
Also, new tests with the mod behaviour
* aarch64: Lower shifts with mod behaviour
* x64: Lower shifts with mod behaviour
* wasmtime: Don't mask SIMD shifts
* [AArch64] Port SIMD narrowing to ISLE
Fvdemote, snarrow, unarrow and uunarrow.
Also refactor the aarch64 instructions descriptions to parameterize
on ScalarSize instead of using different opcodes.
The zero_value pure constructor has been introduced and used by the
integer narrow operations and it replaces, and extends, the compare
zero patterns.
Copright (c) 2022, Arm Limited.
* use short 'if' patterns
Converted the existing implementations for the following opcodes to ISLE
on AArch64:
- `sqrt`
- `fneg`
- `fabs`
- `fpromote`
- `fdemote`
- `ceil`
- `floor`
- `trunc`
- `nearest`
Copyright (c) 2022 Arm Limited
Converted the existing implementations for the following Opcodes to ISLE on AArch64:
- `fadd`
- `fsub`
- `fmul`
- `fdiv`
- `fmin`
- `fmax`
- `fmin_pseudo`
- `fmax_pseudo`
Copyright (c) 2022 Arm Limited
* Implement `iabs` in ISLE (AArch64)
Converts the existing implementation of `iabs` for AArch64 into ISLE,
and fixes support for `iabs` on scalar values.
Copyright (c) 2022 Arm Limited.
* Improve scalar `iabs` implementation.
Also introduces `CSNeg` instruction.
Copyright (c) 2022 Arm Limited
* Convert `scalar_to_vector` to ISLE (AArch64)
Converted the exisiting implementation of `scalar_to_vector` for AArch64 to
ISLE.
Copyright (c) 2022 Arm Limited
* Add support for floats and fix FpuExtend
- Added rules to cover `f32 -> f32x4` and `f64 -> f64x2` for
`scalar_to_vector`
- Added tests for `scalar_to_vector` on floats.
- Corrected an invalid instruction emitted by `FpuExtend` on 64-bit
values.
Copyright (c) 2022 Arm Limited
Introduce a new concept in the IR that allows a producer to create
dynamic vector types. An IR function can now contain global value(s)
that represent a dynamic scaling factor, for a given fixed-width
vector type. A dynamic type is then created by 'multiplying' the
corresponding global value with a fixed-width type. These new types
can be used just like the existing types and the type system has a
set of hard-coded dynamic types, such as I32X4XN, which the user
defined types map onto. The dynamic types are also used explicitly
to create dynamic stack slots, which have no set size like their
existing counterparts. New IR instructions are added to access these
new stack entities.
Currently, during codegen, the dynamic scaling factor has to be
lowered to a constant so the dynamic slots do eventually have a
compile-time known size, as do spill slots.
The current lowering for aarch64 just targets Neon, using a dynamic
scale of 1.
Copyright (c) 2022, Arm Limited.
The previous `cls` code was producing wrong results when fed with a -1 i8.
The fix here is to sign extend instead of zero extending since we want
to keep the sign bit as one in order for it to be counted correctly
in the cls instruction
This also merges the interpreter only tests now that aarch64
correctly supports this instruction
This PR removes "argument polarity": the feature of ISLE extractors that lets them take
inputs aside from the value to be matched.
Cases that need this expressivity have been subsumed by #4072 with if-let clauses;
we can now finally remove this misfeature of the language, which has caused significant
confusion and has always felt like a bit of a hack.
This PR (i) removes the feature from the ISLE compiler; (ii) removes it from the reference
documentation; and (iii) refactors away all uses of the feature in our three existing
backends written in ISLE.
Also fix and extend the current implementation:
- AtomicRMWOp::Clr != AtomicRmwOp::And, as the input needs to be
inverted first.
- Inputs to the cmp for the RMWLoop case are sign-extended when
needed.
- Lower Xchg to Swp.
- Lower Sub to Add with a negated input.
- Added more runtests.
Copyright (c) 2022, Arm Limited.
* x64: port scalar `fcmp` to ISLE
Implement the CLIF lowering for the `fcmp` to ISLE. This adds a new
type-matcher, `ty_scalar_float`, for detecting uses of `F32` and `F64`.
* isle: rename `vec128` to `ty_vec12`
This refactoring changes the name of the `vec128` matcher function to
follow the `ty_*` convention of the other type matchers. It also makes
the helper an inline function call.
* x64: port vector `fcmp` to ISLE
This changes the output of the `lower` constructor from a
`ValueRegs` to a new `InstOutput` type, which is a vector
of `ValueRegs`.
Code in `lower_common` is updated to use this new type to
handle instructions with multiple outputs. All back-ends
are updated to use the new type.
This PR makes use of the new implicit-conversion feature of the ISLE DSL
that was introduced in #3807 in order to make the lowering rules
significantly simpler and more concise.
The basic idea is to eliminate the repetitive and mechanical use of
terms that convert from one type to another when there is only one real
way to do the conversion -- for example, to go from a `WritableReg` to a
`Reg`, the only sensible way is to use `writable_reg_to_reg`.
This PR generally takes any term of the form "A_to_B" and makes it an
automatic conversion, as well as some others that are similar in spirit.
The notable exception to the pure-value-convsion category is the
`put_in_reg` family of operations, which actually do have side-effects.
However, as noted in the doc additions in #3807, this is fine as long as
the side-effects are idempotent. And on balance, making `put_in_reg`
automatic is a significant clarity win -- together with other operand
converters, it enables rules like:
```
;; Add two registers.
(rule (lower (has_type (fits_in_64 ty)
(iadd x y)))
(add ty x y))
```
There may be other converters that we could define to make the rules
even simpler; we can make such improvements as we think of them, but
this should be a good start!
* x64: port `select` using an FP comparison to ISLE
This change includes quite a few interlocking parts, required mainly by
the current x64 conventions in ISLE:
- it adds a way to emit a `cmove` with multiple OR-ing conditions;
because x64 ISLE cannot currently safely emit a comparison followed
by several jumps, this adds `MachInst::CmoveOr` and
`MachInst::XmmCmoveOr` macro instructions. Unfortunately, these macro
instructions hide the multi-instruction sequence in `lower.isle`
- to properly keep track of what instructions consume and produce
flags, @cfallin added a way to pass around variants of
`ConsumesFlags` and `ProducesFlags`--these changes affect all
backends
- then, to lower the `fcmp + select` CLIF, this change adds several
`cmove*_from_values` helpers that perform all of the awkward
conversions between `Value`, `ValueReg`, `Reg`, and `Gpr/Xmm`; one
upside is that now these lowerings have much-improved documentation
explaining why the various `FloatCC` and `CC` choices are made the
the way they are.
Co-authored-by: Chris Fallin <chris@cfallin.org>
Combine the two opcodes into one and pass and add an OperandSize
field to these instructions, as well as an ISLE helper to perform
the conversion from Type.
This saves us from having having to write ISLE helpers to select the
correct opcode, based on type, and reduces the amount of code needed
for emission.
Copyright (c) 2022, Arm Limited.