Previously, the block successor accumulation and the blockparam branch
arg setup were decoupled. The lowering backend implicitly specified
the order of successor edges via its `MachTerminator` enum on the last
instruction in the block, while the `Lower` toplevel
machine-independent driver set up blockparam branch args in the edge
order seen in CLIF.
In some cases, these orders did not match -- for example, when the
conditional branch depended on an FP condition that was implemented by
swapping taken/not-taken edges and inverting the condition code.
This PR refactors the successor handling to be centralized in `Lower`
rather than flow through the terminator `MachInst`, and adds a
successor block and its blockparam args at the same time, ensuring the
orders match.
This PR switches Cranelift over to the new register allocator, regalloc2.
See [this document](https://gist.github.com/cfallin/08553421a91f150254fe878f67301801)
for a summary of the design changes. This switchover has implications for
core VCode/MachInst types and the lowering pass.
Overall, this change brings improvements to both compile time and speed of
generated code (runtime), as reported in #3942:
```
Benchmark Compilation (wallclock) Execution (wallclock)
blake3-scalar 25% faster 28% faster
blake3-simd no diff no diff
meshoptimizer 19% faster 17% faster
pulldown-cmark 17% faster no diff
bz2 15% faster no diff
SpiderMonkey, 21% faster 2% faster
fib(30)
clang.wasm 42% faster N/A
```
* Run the GC smoketest with epoch support enabled as well.
* Handle safepoints in cold blocks properly.
Currently, the way that we find safepoint slots for a given instruction
relies on the instruction index order in the safepoint list matching the
order of instruction emission.
Previous to the introduction of cold-block support, this was trivially
satisfied by sorting the safepoint list: we emit instructions 0, 1, 2,
3, 4, ..., and so if we have safepoints at instructions 1 and 4, we will
encounter them in that order.
However, cold blocks are supported by swizzling the emission order at
the last moment (to avoid having to renumber instructions partway
through the compilation pipeline), so we actually emit instructions out
of index order when cold blocks are present.
Reference-type support in Wasm in particular uses cold blocks for
slowpaths, and has live refs and safepoints in these slowpaths, so we
can reliably "skip" a safepoint (not emit any metadata for it) in the
presence of reftype usage.
This PR fixes the emission code by building a map from instruction index
to safepoint index first, then doing lookups through this map, rather
than following along in-order as it emits instructions.
The debuginfo analyses are written with the assumption that the order of
instructions in the VCode is the order of instructions in the final
machine ocde. This was previously a strong invariant, until we
introduced support for cold blocks. Cold blocks are implemented by
reordering during emission, because the VCode ordering has other
requirements related to lowering (respecting def-use dependencies in the
reverse pass), so it is much simpler to reorder instructions at the last
moment. Unfortunately, this causes the breakage we now see.
This commit fixes the issue by skipping all cold instructions when
emitting value-label ranges (which are translated into debuginfo). This
means that variables defined in cold blocks will not have DWARF
metadata. But cold blocks are usually compiler-inserted slowpaths, not
user code, so this is probably OK. Debuginfo is always best-effort, so
in any case this does not violate any correctness constraints.
If a block is marked cold but has side-effect-free code that is only
used by side-effectful code in non-cold blocks, we will erroneously fail
to emit it, causing a regalloc failure.
This is due to the interaction of block ordering and lowering: we rely
on block ordering to visit uses before defs (except for backedges) so
that we can effectively do an inline liveness analysis and skip lowering
operations that are not used anywhere. This "inline DCE" is needed
because instruction lowering can pattern-match and merge one instruction
into another, removing the need to generate the source instruction.
Unfortunately, the way that I added cold-block support in #3698 was
oblivious to this -- it just changed the block sort order. For
efficiency reasons, we generate code in its final order directly, so it
would not be tenable to generate it in e.g. RPO first and then reorder
cold blocks to the bottom; we really do want to visit in the same order
as the final code.
This PR fixes the bug by moving the point at which cold blocks are sunk
to emission-time instead. This is cheaper than either trying to visit
blocks during lowering in RPO but add to VCode out-of-order, or trying
to do some expensive analysis to recover proper liveness. It's not clear
that the latter would be possible anyway -- the need to lower some
instructions depends on other instructions' isel results/merging
success, so we really do need to visit in RPO, and we can't simply lower
all instructions as side-effecting roots (some can't be toplevel nodes).
The one downside of this approach is that the VCode itself still has
cold blocks inline; so in the text format (and hence compile-tests) it's
not possible to see the sinking. This PR adds a test for cold-block
sinking that actually verifies the machine code. (The test also includes
an add-instruction in the cold path that would have been incorrectly
skipped prior to this fix.)
Fortunately this bug would not have been triggered by the one current
use of cold blocks in #3699, because there the only operation in the
cold block was an (always effectful) call instruction. The worst-case
effect of the bug in other code would be a regalloc panic; no silent
miscompilations could result.
This patch makes spillslot allocation, spilling and reloading all based
on register class only. Hence when we have a 32- or 64-bit value in a
128-bit XMM register on x86-64 or vector register on aarch64, this
results in larger spillslots and spills/restores.
Why make this change, if it results in less efficient stack-frame usage?
Simply put, it is safer: there is always a risk when allocating
spillslots or spilling/reloading that we get the wrong type and make the
spillslot or the store/load too small. This was one contributing factor
to CVE-2021-32629, and is now the source of a fuzzbug in SIMD code that
puns an arbitrary user-controlled vector constant over another
stackslot. (If this were a pointer, that could result in RCE. SIMD is
not yet on by default in a release, fortunately.
In particular, we have not been particularly careful about using moves
between values of different types, for example with `raw_bitcast` or
with certain SIMD operations, and such moves indicate to regalloc.rs
that vregs are in equivalence classes and some arbitrary vreg in the
class is provided when allocating the spillslot or spilling/reloading.
Since regalloc.rs does not track actual type, and since we haven't been
careful about moves, we can't really trust this "arbitrary vreg in
equivalence class" to provide accurate type information.
In the fix to CVE-2021-32629 we fixed this for integer registers by
always spilling/reloading 64 bits; this fix can be seen as the analogous
change for FP/vector regs.
* Use relative `call` instructions between wasm functions
This commit is a relatively major change to the way that Wasmtime
generates code for Wasm modules and how functions call each other.
Prior to this commit all function calls between functions, even if they
were defined in the same module, were done indirectly through a
register. To implement this the backend would emit an absolute 8-byte
relocation near all function calls, load that address into a register,
and then call it. While this technique is simple to implement and easy
to get right, it has two primary downsides associated with it:
* Function calls are always indirect which means they are more difficult
to predict, resulting in worse performance.
* Generating a relocation-per-function call requires expensive
relocation resolution at module-load time, which can be a large
contributing factor to how long it takes to load a precompiled module.
To fix these issues, while also somewhat compromising on the previously
simple implementation technique, this commit switches wasm calls within
a module to using the `colocated` flag enabled in Cranelift-speak, which
basically means that a relative call instruction is used with a
relocation that's resolved relative to the pc of the call instruction
itself.
When switching the `colocated` flag to `true` this commit is also then
able to move much of the relocation resolution from `wasmtime_jit::link`
into `wasmtime_cranelift::obj` during object-construction time. This
frontloads all relocation work which means that there's actually no
relocations related to function calls in the final image, solving both
of our points above.
The main gotcha in implementing this technique is that there are
hardware limitations to relative function calls which mean we can't
simply blindly use them. AArch64, for example, can only go +/- 64 MB
from the `bl` instruction to the target, which means that if the
function we're calling is a greater distance away then we would fail to
resolve that relocation. On x86_64 the limits are +/- 2GB which are much
larger, but theoretically still feasible to hit. Consequently the main
increase in implementation complexity is fixing this issue.
This issue is actually already present in Cranelift itself, and is
internally one of the invariants handled by the `MachBuffer` type. When
generating a function relative jumps between basic blocks have similar
restrictions. This commit adds new methods for the `MachBackend` trait
and updates the implementation of `MachBuffer` to account for all these
new branches. Specifically the changes to `MachBuffer` are:
* For AAarch64 the `LabelUse::Branch26` value now supports veneers, and
AArch64 calls use this to resolve relocations.
* The `emit_island` function has been rewritten internally to handle
some cases which previously didn't come up before, such as:
* When emitting an island the deadline is now recalculated, where
previously it was always set to infinitely in the future. This was ok
prior since only a `Branch19` supported veneers and once it was
promoted no veneers were supported, so without multiple layers of
promotion the lack of a new deadline was ok.
* When emitting an island all pending fixups had veneers forced if
their branch target wasn't known yet. This was generally ok for
19-bit fixups since the only kind getting a veneer was a 19-bit
fixup, but with mixed kinds it's a bit odd to force veneers for a
26-bit fixup just because a nearby 19-bit fixup needed a veneer.
Instead fixups are now re-enqueued unless they're known to be
out-of-bounds. This may run the risk of generating more islands for
19-bit branches but it should also reduce the number of islands for
between-function calls.
* Otherwise the internal logic was tweaked to ideally be a bit more
simple, but that's a pretty subjective criteria in compilers...
I've added some simple testing of this for now. A synthetic compiler
option was create to simply add padded 0s between functions and test
cases implement various forms of calls that at least need veneers. A
test is also included for x86_64, but it is unfortunately pretty slow
because it requires generating 2GB of output. I'm hoping for now it's
not too bad, but we can disable the test if it's prohibitive and
otherwise just comment the necessary portions to be sure to run the
ignored test if these parts of the code have changed.
The final end-result of this commit is that for a large module I'm
working with the number of relocations dropped to zero, meaning that
nothing actually needs to be done to the text section when it's loaded
into memory (yay!). I haven't run final benchmarks yet but this is the
last remaining source of significant slowdown when loading modules,
after I land a number of other PRs both active and ones that I only have
locally for now.
* Fix arm32
* Review comments
This is sometimes useful when performing analyses on the generated
machine code: for example, some kinds of code verifiers will want to do
a control-flow analysis, and it is much easier to do this if one does
not have to recover the CFG from the machine code (doing so requires
heavyweight analysis when indirect branches are involved). If one trusts
the control-flow lowering and only needs to verify other properties of
the code, this can be very useful.
Our previous implementation of unwind infrastructure was somewhat
complex and brittle: it parsed generated instructions in order to
reverse-engineer unwind info from prologues. It also relied on some
fragile linkage to communicate instruction-layout information that VCode
was not designed to provide.
A much simpler, more reliable, and easier-to-reason-about approach is to
embed unwind directives as pseudo-instructions in the prologue as we
generate it. That way, we can say what we mean and just emit it
directly.
The usual reasoning that leads to the reverse-engineering approach is
that metadata is hard to keep in sync across optimization passes; but
here, (i) prologues are generated at the very end of the pipeline, and
(ii) if we ever do a post-prologue-gen optimization, we can treat unwind
directives as black boxes with unknown side-effects, just as we do for
some other pseudo-instructions today.
It turns out that it was easier to just build this for both x64 and
aarch64 (since they share a factored-out ABI implementation), and wire
up the platform-specific unwind-info generation for Windows and SystemV.
Now we have simpler unwind on all platforms and we can delete the old
unwind infra as soon as we remove the old backend.
There were a few consequences to supporting Fastcall unwind in
particular that led to a refactor of the common ABI. Windows only
supports naming clobbered-register save locations within 240 bytes of
the frame-pointer register, whatever one chooses that to be (RSP or
RBP). We had previously saved clobbers below the fixed frame (and below
nominal-SP). The 240-byte range has to include the old RBP too, so we're
forced to place clobbers at the top of the frame, just below saved
RBP/RIP. This is fine; we always keep a frame pointer anyway because we
use it to refer to stack args. It does mean that offsets of fixed-frame
slots (spillslots, stackslots) from RBP are no longer known before we do
regalloc, so if we ever want to index these off of RBP rather than
nominal-SP because we add support for `alloca` (dynamic frame growth),
then we'll need a "nominal-BP" mode that is resolved after regalloc and
clobber-save code is generated. I added a comment to this effect in
`abi_impl.rs`.
The above refactor touched both x64 and aarch64 because of shared code.
This had a further effect in that the old aarch64 prologue generation
subtracted from `sp` once to allocate space, then used stores to `[sp,
offset]` to save clobbers. Unfortunately the offset only has 7-bit
range, so if there are enough clobbered registers (and there can be --
aarch64 has 384 bytes of registers; at least one unit test hits this)
the stores/loads will be out-of-range. I really don't want to synthesize
large-offset sequences here; better to go back to the simpler
pre-index/post-index `stp r1, r2, [sp, #-16]` form that works just like
a "push". It's likely not much worse microarchitecturally (dependence
chain on SP, but oh well) and it actually saves an instruction if
there's no other frame to allocate. As a further advantage, it's much
simpler to understand; simpler is usually better.
This PR adds the new backend on Windows to CI as well.
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:
- Translate value-label metadata on the input into "value_label"
pseudo-instructions when lowering into VCode. These
pseudo-instructions take a register as input, denote a value label,
and semantically are like a "move into value label" -- i.e., they
update the current value (as seen by debugging tools) of the given
local. These pseudo-instructions emit no machine code.
- Perform a dataflow analysis *at the machine-code level*, tracking
value-labels that propagate into registers and into [SP+constant]
stack storage. This is a forward dataflow fixpoint analysis where each
storage location can contain a *set* of value labels, and each value
label can reside in a *set* of storage locations. (Meet function is
pairwise intersection by storage location.)
This analysis traces value labels symbolically through loads and
stores and reg-to-reg moves, so it will naturally handle spills and
reloads without knowing anything special about them.
- When this analysis converges, we have, at each machine-code offset, a
mapping from value labels to some number of storage locations; for
each offset for each label, we choose the best location (prefer
registers). Note that we can choose any location, as the symbolic
dataflow analysis is sound and guarantees that the value at the
value_label instruction propagates to all of the named locations.
- Then we can convert this mapping into a format that the DWARF
generation code (wasmtime's debug crate) can use.
This PR also adds the new-backend variant to the gdb tests on CI.
The asserts on the sizes of the VCode constant-table data structures
introduced in PR #2328 are dependent on the size of data structures such
as `HashMap` in the standard library, which can change. In particular,
on Rust 1.46 (which is not current, but could be e.g. pinned by a
project using Cranelift), it appears that these asserts fail. We
shouldn't depend on stdlib internals; IMHO the asserts on our own struct
sizes are enough to catch accidental size blowups.
In existing MachInst backends, many instructions -- any that can trap or
result in a relocation -- carry `SourceLoc` values in order to propagate
the location-in-original-source to use to describe resulting traps or
relocation errors.
This is quite tedious, and also error-prone: it is likely that the
necessary plumbing will be missed in some cases, and in any case, it's
unnecessarily verbose.
This PR factors out the `SourceLoc` handling so that it is tracked
during emission as part of the `EmitState`, and plumbed through
automatically by the machine-independent framework. Instruction emission
code that directly emits trap or relocation records can query the
current location as necessary. Then we only need to ensure that memory
references and trap instructions, at their (one) emission point rather
than their (many) lowering/generation points, are wired up correctly.
This does have the side-effect that some loads and stores that do not
correspond directly to user code's heap accesses will have unnecessary
but harmless trap metadata. For example, the load that fetches a code
offset from a jump table will have a 'heap out of bounds' trap record
attached to it; but because it is bounds-checked, and will never
actually trap if the lowering is correct, this should be harmless. The
simplicity improvement here seemed more worthwhile to me than plumbing
through a "corresponds to user-level load/store" bit, because the latter
is a bit complex when we allow for op merging.
Closes#2290: though it does not implement a full "metadata" scheme as
described in that issue, this seems simpler overall.
* Make cranelift_codegen::isa::unwind::input public
* Move UnwindCode's common offset field out of the structure
* Make MachCompileResult::unwind_info more generic
* Record initial stack pointer offset
This approach suffers from memory-size bloat during compile time due to the desire to de-duplicate the constants emitted and reduce runtime memory-size. As a first step, though, this provides an end-to-end mechanism for constants to be emitted in the MachBuffer islands.
A new associated type Info is added to MachInstEmit, which is the
immutable counterpart to State. It can't easily be constructed from an
ABICallee, since it would require adding an associated type to the
latter, and making so leaks the associated type in a lot of places in
the code base and makes the code harder to read. Instead, the EmitInfo
state can simply be passed to the `Vcode::emit` function directly.
This PR updates the AArch64 ABI implementation so that it (i) properly
respects that v8-v15 inclusive have callee-save lower halves, and
caller-save upper halves, by conservatively approximating (to full
registers) in the appropriate directions when generating prologue
caller-saves and when informing the regalloc of clobbered regs across
callsites.
In order to prevent saving all of these vector registers in the prologue
of every non-leaf function due to the above approximation, this also
makes use of a new regalloc.rs feature to exclude call instructions'
writes from the clobber set returned by register allocation. This is
safe whenever the caller and callee have the same ABI (because anything
the callee could clobber, the caller is allowed to clobber as well
without saving it in the prologue).
Fixes#2254.
Previously, in #2128, we factored out a common "vanilla 64-bit ABI"
implementation from the AArch64 ABI code, with the idea that this should
be largely compatible with x64. This PR alters the new x64 backend to
make use of the shared infrastructure, removing the duplication that
existed previously. The generated code is nearly (not exactly) the same;
the only difference relates to how the clobber-save region is padded in
the prologue.
This also changes some register allocations in the aarch64 code because
call support in the shared ABI infra now passes a temp vreg in, rather
than requiring use of a fixed, non-allocable temp; tests have been
updated, and the runtime behavior is unchanged.
This PR adds a bit more granularity to the output of e.g. `clif-util
compile -T`, indicating how much time is spent in VCode lowering and
various other new-backend-specific tasks.
This commit adds support for generating stackmaps at safepoints to the
new backend framework and to the AArch64 backend in particular. It has
been tested to work with SpiderMonkey.
Adds support for addss and subss. This is the first lowering for
sse floating point alu and some move operations. The changes here do
some renaming of data structures and adds a couple of new ones
to support sse specific operations. The work done here will likely
evolve as needed to support an efficient, inituative, and consistent
framework.
This patch includes:
- A complete rework of the way that CLIF blocks and edge blocks are
lowered into VCode blocks. The new mechanism in `BlockLoweringOrder`
computes RPO over the CFG, but with a twist: it merges edge blocks intto
heads or tails of original CLIF blocks wherever possible, and it does
this without ever actually materializing the full nodes-plus-edges
graph first. The backend driver lowers blocks in final order so
there's no need to reshuffle later.
- A new `MachBuffer` that replaces the `MachSection`. This is a special
version of a code-sink that is far more than a humble `Vec<u8>`. In
particular, it keeps a record of label definitions and label uses,
with a machine-pluggable `LabelUse` trait that defines various types
of fixups (basically internal relocations).
Importantly, it implements some simple peephole-style branch rewrites
*inline in the emission pass*, without any separate traversals over
the code to use fallthroughs, swap taken/not-taken arms, etc. It
tracks branches at the tail of the buffer and can (i) remove blocks
that are just unconditional branches (by redirecting the label), (ii)
understand a conditional/unconditional pair and swap the conditional
polarity when it's helpful; and (iii) remove branches that branch to
the fallthrough PC.
The `MachBuffer` also implements branch-island support. On
architectures like AArch64, this is needed to allow conditional
branches within plausibly-attainable ranges (+/- 1MB on AArch64
specifically). It also does this inline while streaming through the
emission, without any sort of fixpoint algorithm or later moving of
code, by simply tracking outstanding references and "deadlines" and
emitting an island just-in-time when we're in danger of going out of
range.
- A rework of the instruction selector driver. This is largely following
the same algorithm as before, but is cleaned up significantly, in
particular in the API: the machine backend can ask for an input arg
and get any of three forms (constant, register, producing
instruction), indicating it needs the register or can merge the
constant or producing instruction as appropriate. This new driver
takes special care to emit constants right at use-sites (and at phi
inputs), minimizing their live-ranges, and also special-cases the
"pinned register" to avoid superfluous moves.
Overall, on `bz2.wasm`, the results are:
wasmtime full run (compile + runtime) of bz2:
baseline: 9774M insns, 9742M cycles, 3.918s
w/ changes: 7012M insns, 6888M cycles, 2.958s (24.5% faster, 28.3% fewer insns)
clif-util wasm compile bz2:
baseline: 2633M insns, 3278M cycles, 1.034s
w/ changes: 2366M insns, 2920M cycles, 0.923s (10.7% faster, 10.1% fewer insns)
All numbers are averages of two runs on an Ampere eMAG.
This PR changes the aarch64 ABI implementation to use positive offsets
from SP, rather than negative offsets from FP, to refer to spill slots
and stack-local storage. This allows for better addressing-mode options,
and hence slightly better code: e.g., the unsigned scaled 12-bit offset
mode can be used to reach anywhere in a 32KB frame without extra
address-construction instructions, whereas negative offsets are limited
to a signed 9-bit unscaled mode (-256 bytes).
To enable this, the PR introduces a notion of "nominal SP offsets" as a
virtual addressing mode, lowered during the emission pass. The offsets
are relative to "SP after adjusting downward to allocate stack/spill
slots", but before pushing clobbers. This allows the addressing-mode
expressions to be generated before register allocation (or during it,
for spill/reload sequences).
To convert these offsets into *true* offsets from SP, we need to track
how much further SP is moved downward, and compensate for this. We do so
with "virtual SP offset adjustment" pseudo-instructions: these are seen
by the emission pass, and result in no instruction (0 byte output), but
update state that is now threaded through each instruction emission in
turn. In this way, we can push e.g. stack args for a call and adjust
the virtual SP offset, allowing reloads from nominal-SP-relative
spillslots while we do the argument setup with "real SP offsets" at the
same time.
Previously, the SourceLoc information transferred in `VCode` only
included PC-spans for non-default SourceLocs. I realized that the
invariant we're supposed to keep here is that every PC is covered; if no
source information, just use `SourceLoc::default()`.
This was spurred by @bjorn3's comment in #1575 (thanks!).
This PR updates Cranelift to use the new version of regalloc.rs
(bytecodealliance/regalloc.rs#55) that provides dense vreg->rreg maps to
the `map_reg()` function for each instruction, rather than the earlier
hashmap-based approach.
In one test (regex-rs.wasm), this PR results in a 15% reduction in
memory allocations (1245MB -> 1060MB) as measured by DHAT on `clif-util
wasm` runs.
This change adds SourceLoc information per instruction in a `VCode<Inst>`
container, and keeps this information up-to-date across register allocation
and branch reordering. The information is initially collected during
instruction lowering, eventually collected on the MachSection, and finally
provided to the environment that wraps the codegen crate for wasmtime.
- Undo temporary changes to default features (`all-arch`) and a
signal-handler test.
- Remove `SIGTRAP` handler: no longer needed now that we've found an
"undefined opcode" option on ARM64.
- Rename pp.rs to pretty_print.rs in machinst/.
- Only use empty stack-probe on non-x86. As per a comment in
rust-lang/compiler-builtins [1], LLVM only supports stack probes on
x86 and x86-64. Thus, on any other CPU architecture, we cannot refer
to `__rust_probestack`, because it does not exist.
- Rename arm64 to aarch64.
- Use `target` directive in vcode filetests.
- Run the flags verifier, but without encinfo, when using new backends.
- Clean up warning overrides.
- Fix up use of casts: use u32::from(x) and siblings when possible,
u32::try_from(x).unwrap() when not, to avoid silent truncation.
- Take immutable `Function` borrows as input; we don't actually
mutate the input IR.
- Lots of other miscellaneous cleanups.
[1] cae3e6ea23/src/probestack.rs (L39)
This patch adds the MachInst, or Machine Instruction, infrastructure.
This is the machine-independent portion of the new backend design. It
contains the implementation of the "vcode" (virtual-registerized code)
container, the top-level lowering algorithm and compilation pipeline,
and the trait definitions that the machine backends will fill in.
This backend infrastructure is included in the compilation of the
`codegen` crate, but it is not yet tied into the public APIs; that patch
will come last, after all the other pieces are filled in.
This patch contains code written by Julian Seward <jseward@acm.org> and
Benjamin Bouvier <public@benj.me>, originally developed on a side-branch
before rebasing and condensing into this patch series. See the `arm64`
branch at `https://github.com/cfallin/wasmtime` for original development
history.
Co-authored-by: Julian Seward <jseward@acm.org>
Co-authored-by: Benjamin Bouvier <public@benj.me>