This allows the assertions to be disabled in release builds, so that
the code is faster and smaller, at the expense of not performing the
checks. Assertions can be re-enabled in release builds with the
debug-assertions flag in Cargo.toml, as the top-level Cargo.toml
file does.
Emergency stack slots are a new kind of stack slot added relatively
recently. They need to be allocated a stack offset just like explicit
and spill slots.
Also, make StackSlotData's offset field an Option, to catch problems
like this in the future. Previously the value 0 was used when offsets
weren't assigned yet, however that made it non-obvious when the field
meant "not assigned yet" and when it meant "assigned the value 0".
The term "local variables" predated the SSA builder in the front-end
crate, which also provides a way to implement source-language local
variables. The name "explicit stack slot" makes it clear what this
construct is.
This makes it easier to debug testcases:
- the entity numbers in a .cton file match the entity numbers used
within Cretonne.
- serializing and deserializing doesn't cause indices to change.
One disadvantage is that if a .cton file uses sparse entity numbers,
deserializing to the in-memory form doesn't compact it. However, the
text format is not intended to be performance-critical, so this isn't
expected to be a big burden.
This is primarily for the benefit of 32-bit x86 code which can't spill
1-byte types from arbitrary registers. This makes it possible to use
32-bit writes to spill types like b1 and i8.
These small types are expected to be very rare since WebAssembly doesn't
have then, and we tend to push integer arithmetic to at least i32. The
effect of frame sizes should be minimal.
- Create a new kind of stack slot: emergency_slot.
- Add a get_emergency_slot() method which finds a suitable emergency
slot given a list of slots already in use.
- Use emergency spill slots when schedule_moves needs them.
With FuncEnvironment using FuncCursors in place of full
FunctionBuilders, it's useful to move several of these convenience
functions from FunctionBuilder to Function.
The new PrimaryMap replaces the primary EntityMap and the PrimaryEntityData
marker trait which was causing some confusion. We now have a clear
division between the two types of maps:
- PrimaryMap is used to assign entity numbers to the primary data for an
entity.
- EntityMap is a secondary mapping adding additional info.
The split also means that the secondary EntityMap can now behave as if
all keys have a default value. This means that we can get rid of the
annoying ensure() and get_or_default() methods ther were used everywhere
instead of indexing. Just use normal indexing now; non-existent keys
will return the default value.
This is trying to keep algorithms out if the ir module which deals with
the intermediate representation.
Also give the layout_stack() function a Result return value so it can
report a soft error when the stack frame is too large instead of
asserting. Since local variables can be arbitrarily large, it is easy
enough to overflow the stack with even a small function.
Add a StackSlots::layout() method which computes the total stack frame
size and assigns offsets to all spill slots and local variables so they
don't interfere with each other or with incoming or outgoing function
arguments.
Stack slots are given an ad hoc alignment that is the natural alignment
for power-of-two sized spill slots, up to the stack pointer alignment.
It is possible we need explicit stack slot alignment in the future, but
at least for spill slots, this scheme is likely to work for most ISAs.
Stack slots for outgoing arguments can be reused between function calls.
Add a list of outgoing argument stack slots allocated so far, and
provide a `get_outgoing_arg()` method which will reuse any outgoing
stack slots with matching size and offset.
Function arguments that don't fit in registers are passed on the stack.
Create "incoming_arg" stack slots representing the stack arguments, and
assign them to the value arguments during spilling.
The offset is relative to the stack pointer in the calling function, so
it excludes the return address pushed by the call instruction itself on
Intel ISAs.
Change the ArgumentLoc::Stack offset to an i32, so it matches the stack
slot offsets.
Use a new StackSlots struct to keep track of a function's stack slots
instead of just an entity map. This let's us build more internal data
structures for tracking the stack slots if necessary.
Start by adding a make_spill_slot() function that will be used by the
register allocator.
Add a StackSlotKind enumeration to help keep track of the different
kinds of stack slots supported:
- Incoming and outgoing function arguments on the stack.
- Spill slots and locals.
Change the text format syntax for declaring a stack slot to use a kind
keyword rather than just 'stack_slot'.
Give these crates each a more standard directory layout with sources in
a 'src' sub-sirectory and Cargo.toml in the top lib/foo directory.
Add license and description fields to each.
The build script for the cretonne crate now lives in
'lib/cretonne/build.rs' separating it from the normal library sources
under 'lib/cretonne/src'.