This PR removes "argument polarity": the feature of ISLE extractors that lets them take
inputs aside from the value to be matched.
Cases that need this expressivity have been subsumed by #4072 with if-let clauses;
we can now finally remove this misfeature of the language, which has caused significant
confusion and has always felt like a bit of a hack.
This PR (i) removes the feature from the ISLE compiler; (ii) removes it from the reference
documentation; and (iii) refactors away all uses of the feature in our three existing
backends written in ISLE.
Also fix and extend the current implementation:
- AtomicRMWOp::Clr != AtomicRmwOp::And, as the input needs to be
inverted first.
- Inputs to the cmp for the RMWLoop case are sign-extended when
needed.
- Lower Xchg to Swp.
- Lower Sub to Add with a negated input.
- Added more runtests.
Copyright (c) 2022, Arm Limited.
* x64: port scalar `fcmp` to ISLE
Implement the CLIF lowering for the `fcmp` to ISLE. This adds a new
type-matcher, `ty_scalar_float`, for detecting uses of `F32` and `F64`.
* isle: rename `vec128` to `ty_vec12`
This refactoring changes the name of the `vec128` matcher function to
follow the `ty_*` convention of the other type matchers. It also makes
the helper an inline function call.
* x64: port vector `fcmp` to ISLE
This changes the output of the `lower` constructor from a
`ValueRegs` to a new `InstOutput` type, which is a vector
of `ValueRegs`.
Code in `lower_common` is updated to use this new type to
handle instructions with multiple outputs. All back-ends
are updated to use the new type.
This PR makes use of the new implicit-conversion feature of the ISLE DSL
that was introduced in #3807 in order to make the lowering rules
significantly simpler and more concise.
The basic idea is to eliminate the repetitive and mechanical use of
terms that convert from one type to another when there is only one real
way to do the conversion -- for example, to go from a `WritableReg` to a
`Reg`, the only sensible way is to use `writable_reg_to_reg`.
This PR generally takes any term of the form "A_to_B" and makes it an
automatic conversion, as well as some others that are similar in spirit.
The notable exception to the pure-value-convsion category is the
`put_in_reg` family of operations, which actually do have side-effects.
However, as noted in the doc additions in #3807, this is fine as long as
the side-effects are idempotent. And on balance, making `put_in_reg`
automatic is a significant clarity win -- together with other operand
converters, it enables rules like:
```
;; Add two registers.
(rule (lower (has_type (fits_in_64 ty)
(iadd x y)))
(add ty x y))
```
There may be other converters that we could define to make the rules
even simpler; we can make such improvements as we think of them, but
this should be a good start!
* x64: port `select` using an FP comparison to ISLE
This change includes quite a few interlocking parts, required mainly by
the current x64 conventions in ISLE:
- it adds a way to emit a `cmove` with multiple OR-ing conditions;
because x64 ISLE cannot currently safely emit a comparison followed
by several jumps, this adds `MachInst::CmoveOr` and
`MachInst::XmmCmoveOr` macro instructions. Unfortunately, these macro
instructions hide the multi-instruction sequence in `lower.isle`
- to properly keep track of what instructions consume and produce
flags, @cfallin added a way to pass around variants of
`ConsumesFlags` and `ProducesFlags`--these changes affect all
backends
- then, to lower the `fcmp + select` CLIF, this change adds several
`cmove*_from_values` helpers that perform all of the awkward
conversions between `Value`, `ValueReg`, `Reg`, and `Gpr/Xmm`; one
upside is that now these lowerings have much-improved documentation
explaining why the various `FloatCC` and `CC` choices are made the
the way they are.
Co-authored-by: Chris Fallin <chris@cfallin.org>
Combine the two opcodes into one and pass and add an OperandSize
field to these instructions, as well as an ISLE helper to perform
the conversion from Type.
This saves us from having having to write ISLE helpers to select the
correct opcode, based on type, and reduces the amount of code needed
for emission.
Copyright (c) 2022, Arm Limited.
This commit migrates these existing instructions to ISLE from the manual
lowerings implemented today. This was mostly straightforward but while I
was at it I fixed what appeared to be broken translations for I{8,16}
for `clz`, `cls`, and `ctz`. Previously the lowerings would produce
results as-if the input was 32-bits, but now I believe they all
correctly account for the bit-width.
* aarch64: Use smaller instruction helpers in ISLE
This commit moves the aarch64 backend's ISLE to be more similar to the
x64 backend's ISLE where one-liner instruction builders are used for
various forms of instructions instead of always using the
constructor-per-variant-of-`Inst`. Overall I think this change worked
out quite well and sets up some naming idioms as well for various forms
of instructions.
* rebase conflict
This commit translates the `rotl` and `rotr` lowerings already existing
to ISLE. The port was relatively straightforward with the biggest
changing being the instructions generated around i128 rotl/rotr
primarily due to register changes.
* aarch64: Migrate ishl/ushr/sshr to ISLE
This commit migrates the `ishl`, `ushr`, and `sshr` instructions to
ISLE. These involve special cases for almost all types of integers
(including vectors) and helper functions for the i128 lowerings since
the i128 lowerings look to be used for other instructions as well. This
doesn't delete the i128 lowerings in the Rust code just yet because
they're still used by Rust lowerings, but they should be deletable in
due time once those lowerings are translated to ISLE.
* Use more descriptive names for i128 lowerings
* Use a with_flags-lookalike for csel
* Use existing `with_flags_*`
* Coment backwards order
* Update generated code
* aarch64: Migrate some bit-ops to ISLE
This commit migrates these instructions to ISLE:
* `bnot`
* `band`
* `bor`
* `bxor`
* `band_not`
* `bor_not`
* `bxor_not`
The translations were relatively straightforward but the interesting
part here was trying to reduce the duplication between all these
instructions. I opted for a route that's similar to what the lowering
does today, having a `decl` which takes the `ALUOp` and then performs
further pattern matching internally. This enabled each instruction's
lowering to be pretty simple while we still get to handle all the fancy
cases of shifts, constants, etc, for each instruction.
* Actually delete previous lowerings
* Remove dead code
This commit migrates the sign/zero extension instructions from
`lower_inst.rs` to ISLE. There's actually a fair amount going on in this
migration since a few other pieces needed touching up along the way as
well:
* First is the actual migration of `uextend` and `sextend`. These
instructions are relatively simple but end up having a number of special
cases. I've attempted to replicate all the cases here but
double-checks would be good.
* This commit actually fixes a few issues where if the result of a vector
extraction is sign/zero-extended into i128 that actually results in
panics in the current backend.
* This commit adds exhaustive testing for
extension-of-a-vector-extraction is a noop wrt extraction.
* A bugfix around ISLE glue was required to get this commit working,
notably the case where the `RegMapper` implementation was trying to
map an input to an output (meaning ISLE was passing through an input
unmodified to the output) wasn't working. This requires a `mov`
instruction to be generated and this commit updates the glue to do
this. At the same time this commit updates the ISLE glue to share more
infrastructure between x64 and aarch64 so both backends get this fix
instead of just aarch64.
Overall I think that the translation to ISLE was a net benefit for these
instructions. It's relatively obvious what all the cases are now unlike
before where it took a few reads of the code and some boolean switches
to figure out which path was taken for each flavor of input. I think
there's still possible improvements here where, for example, the
`put_in_reg_{s,z}ext64` helper doesn't use this logic so technically
those helpers could also pattern match the "well atomic loads and vector
extractions automatically do this for us" but that's a possible future
improvement for later (and shouldn't be too too hard with some ISLE
refactoring).
* aarch64: Migrate {s,u}{div,rem} to ISLE
This commit migrates four different instructions at once to ISLE:
* `sdiv`
* `udiv`
* `srem`
* `urem`
These all share similar codegen and center around the `div` instruction
to use internally. The main feature of these was to model the manual
traps since the `div` instruction doesn't trap on overflow, instead
requiring manual checks to adhere to the semantics of the instruction
itself.
While I was here I went ahead and implemented an optimization for these
instructions when the right-hand-side is a constant with a known value.
For `udiv`, `srem`, and `urem` if the right-hand-side is a nonzero
constant then the checks for traps can be skipped entirely. For `sdiv`
if the constant is not 0 and not -1 then additionally all checks can be
elided. Finally if the right-hand-side of `sdiv` is -1 the zero-check is
elided, but it still needs a check for `i64::MIN` on the left-hand-side
and currently there's a TODO where `-1` is still checked too.
* Rebasing and review conflicts
This starts moving over some sign/zero-extend helpers also present in
lowering in Rust. Otherwise this is a relatively unsurprising transition
with the various cases of the instructions mapping well to ISLE
utilities.
This commit migrates the `imul` clif instruction lowering for AArch64 to
ISLE. This is a relatively complicated instruction with lots of special
cases due to the simd proposal for wasm. Like x64, however, the special
casing lends itself to ISLE quite well and the lowerings here in theory
are pretty straightforward.
The main gotcha of this commit is that this encounters a unique
situation which hasn't been encountered yet with other lowerings, namely
the `Umlal32` instruction used in the implementation of `i64x2.mul` is
unique in the `VecRRRLongOp` class of instructions in that it both reads
and writes the destination register (`use_mod` instead of simply
`use_def`). This meant that I needed to add another helper in ISLe for
creating a `vec_rrrr_long` instruction (despite this enum variant not
actually existing) which implicitly moves the first operand into the
destination before issuing the actual `VecRRRLong` instruction.
In [this
comment](https://github.com/bytecodealliance/wasmtime/pull/3545#discussion_r756284757)
I noted a potential subtle issue with the way that a few rules were
written that is fine now but could cause some unexpected pain when we
get around to verification.
Specifically, a set of rules of the form
```
(rule (A (B _)) (C))
(rule (A _) (D))
```
should, under any reasonable "default" rule ordering scheme, fire the
more specific rule `(A (B _))` when applicable, in preference to the
second "fallback" rule.
However, for future verification-specific applications of ISLE, we want
to ensure the property that a rule's meaning/validity is not dependent
on being overridden by more specific rules. In other words, if a rule
specifies a rewrite, that rewrite should always be correct; and choosing
a more specific rule can give a *better* compilation (better generated
code) but should not be necessary for correctness.
This is an admittedly under-documented part of the language, though in the
pending #3560 I added a note about rule ordering being a heuristic that
should hopefully make this slightly clearer. Ultimately I want to have
tests that choose non-default rule orderings and differentially fuzz in
order to be sure that we're following this principle; and of course once
we're actually doing verification, we'll catch issues like this upfront.
Apologies for the subtle footgun here and hopefully the reasoning is
clear enough :-)
This commit is the first "meaty" instruction added to ISLE for the
AArch64 backend. I chose to pick the first two in the current lowering's
`match` statement, `isub` and `iadd`. These two turned out to be
particularly interesting for a few reasons:
* Both had clearly migratable-to-ISLE behavior along the lines of
special-casing per type. For example 128-bit and vector arithmetic
were both easily translateable.
* The `iadd` instruction has special cases for fusing with a
multiplication to generate `madd` which is expressed pretty easily in
ISLE.
* Otherwise both instructions had a number of forms where they attempted
to interpret the RHS as various forms of constants, extends, or
shifts. There's a bit of a design space of how best to represent this
in ISLE and what I settled on was to have a special case for each form
of instruction, and the special cases are somewhat duplicated between
`iadd` and `isub`. There's custom "extractors" for the special cases
and instructions that support these special cases will have an
`rule`-per-case.
Overall I think the ISLE transitioned pretty well. I don't think that
the aarch64 backend is going to follow the x64 backend super closely,
though. For example the x64 backend is having a helper-per-instruction
at the moment but with AArch64 it seems to make more sense to only have
a helper-per-enum-variant-of-`MInst`. This is because the same
instruction (e.g. `ALUOp::Sub32`) can be expressed with multiple
different forms depending on the payload.
It's worth noting that the ISLE looks like it's a good deal larger than
the code actually being removed from lowering as part of this commit. I
think this is deceptive though because a lot of the logic in
`put_input_in_rse_imm12_maybe_negated` and `alu_inst_imm12` is being
inlined into the ISLE definitions for each instruction instead of having
it all packed into the helper functions. Some of the "boilerplate" here
is the addition of various ISLE utilities as well.
* aarch64: Initial work to transition backend to ISLE
This commit is what is hoped to be the initial commit towards migrating
the aarch64 backend to ISLE. There's seemingly a lot of changes here but
it's intended to largely be code motion. The current thinking is to
closely follow the x64 backend for how all this is handled and
organized.
Major changes in this PR are:
* The `Inst` enum is now defined in ISLE. This avoids having to define
it in two places (once in Rust and once in ISLE). I've preserved all
the comments in the ISLE and otherwise this isn't actually a
functional change from the Rust perspective, it's still the same enum
according to Rust.
* Lots of little enums and things were moved to ISLE as well. As with
`Inst` their definitions didn't change, only where they're defined.
This will give future ISLE PRs access to all these operations.
* Initial code for lowering `iconst`, `null`, and `bconst` are
implemented. Ironically none of this is actually used right now
because constant lowering is handled in `put_input_in_regs` which
specially handles constants. Nonetheless I wanted to get at least
something simple working which shows off how to special case various
things that are specific to AArch64. In a future PR I plan to hook up
const-lowering in ISLE to this path so even though
`iconst`-the-clif-instruction is never lowered this should use the
const lowering defined in ISLE rather than elsewhere in the backend
(eventually leading to the deletion of the non-ISLE lowering).
* The `IsleContext` skeleton is created and set up for future additions.
* Some code for ISLE that's shared across all backends now lives in
`isle_prelude_methods!()` and is deduplicated between the AArch64
backend and the x64 backend.
* Register mapping is tweaked to do the same thing for AArch64 that it
does for x64. Namely mapping virtual registers is supported instead of
just virtual to machine registers.
My main goal with this PR was to get AArch64 into a place where new
instructions can be added with relative ease. Additionally I'm hoping to
figure out as part of this change how much to share for ISLE between
AArch64 and x64 (and other backends).
* Don't use priorities with rules
* Update .gitattributes with concise syntax
* Deduplicate some type definitions
* Rebuild ISLE
* Move isa::isle to machinst::isle