Return a Result from the TargetIsa::encode() method.

When an instruction can't be encoded, provide a viable legalization
action in the form of a Legalize enum.
This commit is contained in:
Jakob Stoklund Olesen
2016-11-03 18:59:32 -07:00
parent 9c02fe3553
commit e59b47c41a
4 changed files with 64 additions and 40 deletions

View File

@@ -3,7 +3,7 @@
//! This module contains types and functions for working with the encoding tables generated by
//! `lib/cretonne/meta/gen_encoding.py`.
use ir::{Type, Opcode};
use isa::Encoding;
use isa::{Encoding, Legalize};
use constant_hash::{Table, probe};
/// Level 1 hash table entry.
@@ -83,16 +83,21 @@ pub fn lookup_enclist<OffT1, OffT2>(ctrl_typevar: Type,
opcode: Opcode,
level1_table: &[Level1Entry<OffT1>],
level2_table: &[Level2Entry<OffT2>])
-> Option<usize>
-> Result<usize, Legalize>
where OffT1: Into<u32> + Copy,
OffT2: Into<u32> + Copy
{
probe(level1_table, ctrl_typevar, ctrl_typevar.index()).and_then(|l1idx| {
let l1ent = &level1_table[l1idx];
let l2off = l1ent.offset.into() as usize;
let l2tab = &level2_table[l2off..l2off + (1 << l1ent.log2len)];
probe(l2tab, opcode, opcode as usize).map(|l2idx| l2tab[l2idx].offset.into() as usize)
})
// TODO: The choice of legalization actions here is naive. This needs to be configurable.
probe(level1_table, ctrl_typevar, ctrl_typevar.index())
.ok_or(Legalize::Narrow)
.and_then(|l1idx| {
let l1ent = &level1_table[l1idx];
let l2off = l1ent.offset.into() as usize;
let l2tab = &level2_table[l2off..l2off + (1 << l1ent.log2len)];
probe(l2tab, opcode, opcode as usize)
.map(|l2idx| l2tab[l2idx].offset.into() as usize)
.ok_or(Legalize::Expand)
})
}
/// Encoding list entry.

View File

@@ -87,6 +87,19 @@ impl settings::Configurable for Builder {
}
}
/// After determining that an instruction doesn't have an encoding, how should we proceed to
/// legalize it?
///
/// These actions correspond to the transformation groups defined in `meta/cretonne/legalize.py`.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Legalize {
/// Legalize in terms of narrower types.
Narrow,
/// Expanding in terms of other instructions using the same types.
Expand,
}
/// Methods that are specialized to a target ISA.
pub trait TargetIsa {
/// Get the name of this ISA.
@@ -101,7 +114,7 @@ pub trait TargetIsa {
/// Otherwise, return `None`.
///
/// This is also the main entry point for determining if an instruction is legal.
fn encode(&self, dfg: &DataFlowGraph, inst: &InstructionData) -> Option<Encoding>;
fn encode(&self, dfg: &DataFlowGraph, inst: &InstructionData) -> Result<Encoding, Legalize>;
/// Get a static array of names associated with encoding recipes in this ISA. Encoding recipes
/// are numbered starting from 0, corresponding to indexes into th name array.

View File

@@ -6,7 +6,7 @@ mod enc_tables;
use super::super::settings as shared_settings;
use isa::enc_tables::{self as shared_enc_tables, lookup_enclist, general_encoding};
use isa::Builder as IsaBuilder;
use isa::{TargetIsa, Encoding};
use isa::{TargetIsa, Encoding, Legalize};
use ir::{InstructionData, DataFlowGraph};
#[allow(dead_code)]
@@ -48,7 +48,7 @@ impl TargetIsa for Isa {
&self.shared_flags
}
fn encode(&self, _: &DataFlowGraph, inst: &InstructionData) -> Option<Encoding> {
fn encode(&self, _: &DataFlowGraph, inst: &InstructionData) -> Result<Encoding, Legalize> {
lookup_enclist(inst.first_type(),
inst.opcode(),
self.cpumode,
@@ -58,6 +58,7 @@ impl TargetIsa for Isa {
&enc_tables::ENCLISTS[..],
|instp| enc_tables::check_instp(inst, instp),
|isap| self.isa_flags.numbered_predicate(isap as usize))
.ok_or(Legalize::Expand)
})
}
@@ -109,7 +110,7 @@ mod tests {
};
// Immediate is out of range for ADDI.
assert_eq!(isa.encode(&dfg, &inst64_large), None);
assert_eq!(isa.encode(&dfg, &inst64_large), Err(isa::Legalize::Expand));
// Create an iadd_imm.i32 which is encodable in RV64.
let inst32 = InstructionData::BinaryImm {
@@ -144,8 +145,8 @@ mod tests {
imm: immediates::Imm64::new(-10),
};
// ADDI is I/0b00100
assert_eq!(isa.encode(&dfg, &inst64), None);
// In 32-bit mode, an i64 bit add should be narrowed.
assert_eq!(isa.encode(&dfg, &inst64), Err(isa::Legalize::Narrow));
// Try to encode iadd_imm.i64 vx1, -10000.
let inst64_large = InstructionData::BinaryImm {
@@ -155,8 +156,8 @@ mod tests {
imm: immediates::Imm64::new(-10000),
};
// Immediate is out of range for ADDI.
assert_eq!(isa.encode(&dfg, &inst64_large), None);
// In 32-bit mode, an i64 bit add should be narrowed.
assert_eq!(isa.encode(&dfg, &inst64_large), Err(isa::Legalize::Narrow));
// Create an iadd_imm.i32 which is encodable in RV32.
let inst32 = InstructionData::BinaryImm {
@@ -176,7 +177,7 @@ mod tests {
args: [arg32, arg32],
};
assert_eq!(isa.encode(&dfg, &mul32), None);
assert_eq!(isa.encode(&dfg, &mul32), Err(isa::Legalize::Expand));
}
#[test]

View File

@@ -15,7 +15,7 @@
use ir::{Function, Cursor, DataFlowGraph, InstructionData, Opcode, Inst, InstBuilder};
use ir::condcodes::IntCC;
use isa::TargetIsa;
use isa::{TargetIsa, Legalize};
/// Legalize `func` for `isa`.
///
@@ -25,30 +25,35 @@ use isa::TargetIsa;
pub fn legalize_function(func: &mut Function, isa: &TargetIsa) {
// TODO: This is very simplified and incomplete.
func.encodings.resize(func.dfg.num_insts());
for ebb in func.layout.ebbs() {
for inst in func.layout.ebb_insts(ebb) {
let mut pos = Cursor::new(&mut func.layout);
while let Some(_ebb) = pos.next_ebb() {
while let Some(inst) = pos.next_inst() {
match isa.encode(&func.dfg, &func.dfg[inst]) {
Some(encoding) => func.encodings[inst] = encoding,
None => {
// TODO: We should transform the instruction into legal equivalents.
// Possible strategies are:
// 1. Expand instruction into sequence of legal instructions. Possibly
// iteratively.
// 2. Split the controlling type variable into high and low parts. This applies
// both to SIMD vector types which can be halved and to integer types such
// as `i64` used on a 32-bit ISA.
// 3. Promote the controlling type variable to a larger type. This typically
// means expressing `i8` and `i16` arithmetic in terms if `i32` operations
// on RISC targets. (It may or may not be beneficial to promote small vector
// types versus splitting them.)
// 4. Convert to library calls. For example, floating point operations on an
// ISA with no IEEE 754 support.
//
// The iteration scheme used here is not going to cut it. Transforming
// instructions involves changing `function.layout` which is impossiblr while
// it is referenced by the two iterators. We need a layout cursor that can
// maintain a position *and* permit inserting and replacing instructions.
Ok(encoding) => func.encodings[inst] = encoding,
Err(Legalize::Expand) => {
expand(&mut pos, &mut func.dfg);
}
Err(Legalize::Narrow) => {
narrow(&mut pos, &mut func.dfg);
}
// TODO: We should transform the instruction into legal equivalents.
// Possible strategies are:
// 1. Expand instruction into sequence of legal instructions. Possibly
// iteratively.
// 2. Split the controlling type variable into high and low parts. This applies
// both to SIMD vector types which can be halved and to integer types such
// as `i64` used on a 32-bit ISA.
// 3. Promote the controlling type variable to a larger type. This typically
// means expressing `i8` and `i16` arithmetic in terms if `i32` operations
// on RISC targets. (It may or may not be beneficial to promote small vector
// types versus splitting them.)
// 4. Convert to library calls. For example, floating point operations on an
// ISA with no IEEE 754 support.
//
// The iteration scheme used here is not going to cut it. Transforming
// instructions involves changing `function.layout` which is impossiblr while
// it is referenced by the two iterators. We need a layout cursor that can
// maintain a position *and* permit inserting and replacing instructions.
}
}
}