Legalize ABI arguments to call and return instructions.
The type signatures of functions can change when they are legalized for a specific ABI. This means that all call and return instructions need to be rewritten to use the correct arguments. - Fix arguments to call instructions. - Fix arguments to return instructions. TBD: - Fix return values from call instructions.
This commit is contained in:
@@ -7,27 +7,26 @@ isa riscv
|
||||
|
||||
function f(i32) {
|
||||
sig0 = signature(i32) -> i32
|
||||
|
||||
; check: sig0 = signature(i32 [%x10]) -> i32 [%x10]
|
||||
; check: sig0 = signature(i32 [%x10]) -> i32 [%x10]
|
||||
|
||||
sig1 = signature(i64) -> b1
|
||||
; check: sig1 = signature(i32 [%x10], i32 [%x11]) -> b1 [%x10]
|
||||
; check: sig1 = signature(i32 [%x10], i32 [%x11]) -> b1 [%x10]
|
||||
|
||||
; The i64 argument must go in an even-odd register pair.
|
||||
; The i64 argument must go in an even-odd register pair.
|
||||
sig2 = signature(f32, i64) -> f64
|
||||
; check: sig2 = signature(f32 [%f10], i32 [%x12], i32 [%x13]) -> f64 [%f10]
|
||||
; check: sig2 = signature(f32 [%f10], i32 [%x12], i32 [%x13]) -> f64 [%f10]
|
||||
|
||||
; Spilling into the stack args.
|
||||
; Spilling into the stack args.
|
||||
sig3 = signature(f64, f64, f64, f64, f64, f64, f64, i64) -> f64
|
||||
; check: sig3 = signature(f64 [%f10], f64 [%f11], f64 [%f12], f64 [%f13], f64 [%f14], f64 [%f15], f64 [%f16], i32 [0], i32 [4]) -> f64 [%f10]
|
||||
; check: sig3 = signature(f64 [%f10], f64 [%f11], f64 [%f12], f64 [%f13], f64 [%f14], f64 [%f15], f64 [%f16], i32 [0], i32 [4]) -> f64 [%f10]
|
||||
|
||||
; Splitting vectors.
|
||||
; Splitting vectors.
|
||||
sig4 = signature(i32x4)
|
||||
; check: sig4 = signature(i32 [%x10], i32 [%x11], i32 [%x12], i32 [%x13])
|
||||
; check: sig4 = signature(i32 [%x10], i32 [%x11], i32 [%x12], i32 [%x13])
|
||||
|
||||
; Splitting vectors, then splitting ints.
|
||||
; Splitting vectors, then splitting ints.
|
||||
sig5 = signature(i64x4)
|
||||
; check: sig5 = signature(i32 [%x10], i32 [%x11], i32 [%x12], i32 [%x13], i32 [%x14], i32 [%x15], i32 [%x16], i32 [%x17])
|
||||
; check: sig5 = signature(i32 [%x10], i32 [%x11], i32 [%x12], i32 [%x13], i32 [%x14], i32 [%x15], i32 [%x16], i32 [%x17])
|
||||
|
||||
ebb0(v0: i32):
|
||||
return_reg v0
|
||||
@@ -35,62 +34,75 @@ ebb0(v0: i32):
|
||||
|
||||
function int_split_args(i64) -> i64 {
|
||||
ebb0(v0: i64):
|
||||
; check: $ebb0($(v0l=$VX): i32, $(v0h=$VX): i32):
|
||||
; check: iconcat_lohi $v0l, $v0h
|
||||
; check: $ebb0($(v0l=$VX): i32, $(v0h=$VX): i32):
|
||||
; check: iconcat_lohi $v0l, $v0h
|
||||
v1 = iadd_imm v0, 1
|
||||
return v0
|
||||
; check: $(v1l=$V), $(v1h=$VX) = isplit_lohi $v1
|
||||
; check: return $v1l, $v1h
|
||||
return v1
|
||||
}
|
||||
|
||||
function int_ext(i8, i8 sext, i8 uext) -> i8 {
|
||||
function int_ext(i8, i8 sext, i8 uext) -> i8 uext {
|
||||
ebb0(v1: i8, v2: i8, v3: i8):
|
||||
; check: $ebb0($v1: i8, $(v2x=$VX): i32, $(v3x=$VX): i32):
|
||||
; check: ireduce.i8 $v2x
|
||||
; check: ireduce.i8 $v3x
|
||||
; check: $ebb0($v1: i8, $(v2x=$VX): i32, $(v3x=$VX): i32):
|
||||
; check: ireduce.i8 $v2x
|
||||
; check: ireduce.i8 $v3x
|
||||
; check: $(v1x=$V) = uextend.i32 $v1
|
||||
; check: return $v1x
|
||||
return v1
|
||||
}
|
||||
|
||||
function vector_split_args(i64x4) -> i64 {
|
||||
function vector_split_args(i64x4) -> i64x4 {
|
||||
ebb0(v0: i64x4):
|
||||
; check: $ebb0($(v0al=$VX): i32, $(v0ah=$VX): i32, $(v0bl=$VX): i32, $(v0bh=$VX): i32, $(v0cl=$VX): i32, $(v0ch=$VX): i32, $(v0dl=$VX): i32, $(v0dh=$VX): i32):
|
||||
; check: $(v0a=$V) = iconcat_lohi $v0al, $v0ah
|
||||
; check: $(v0b=$V) = iconcat_lohi $v0bl, $v0bh
|
||||
; check: $(v0ab=$V) = vconcat $v0a, $v0b
|
||||
; check: $(v0c=$V) = iconcat_lohi $v0cl, $v0ch
|
||||
; check: $(v0d=$V) = iconcat_lohi $v0dl, $v0dh
|
||||
; check: $(v0cd=$V) = vconcat $v0c, $v0d
|
||||
; check: $(v0abcd=$V) = vconcat $v0ab, $v0cd
|
||||
; check: $ebb0($(v0al=$VX): i32, $(v0ah=$VX): i32, $(v0bl=$VX): i32, $(v0bh=$VX): i32, $(v0cl=$VX): i32, $(v0ch=$VX): i32, $(v0dl=$VX): i32, $(v0dh=$VX): i32):
|
||||
; check: $(v0a=$V) = iconcat_lohi $v0al, $v0ah
|
||||
; check: $(v0b=$V) = iconcat_lohi $v0bl, $v0bh
|
||||
; check: $(v0ab=$V) = vconcat $v0a, $v0b
|
||||
; check: $(v0c=$V) = iconcat_lohi $v0cl, $v0ch
|
||||
; check: $(v0d=$V) = iconcat_lohi $v0dl, $v0dh
|
||||
; check: $(v0cd=$V) = vconcat $v0c, $v0d
|
||||
; check: $(v0abcd=$V) = vconcat $v0ab, $v0cd
|
||||
v1 = iadd v0, v0
|
||||
return v0
|
||||
; check: $(v1ab=$V), $(v1cd=$VX) = vsplit
|
||||
; check: $(v1a=$V), $(v1b=$VX) = vsplit $v1ab
|
||||
; check: $(v1al=$V), $(v1ah=$VX) = isplit_lohi $v1a
|
||||
; check: $(v1bl=$V), $(v1bh=$VX) = isplit_lohi $v1b
|
||||
; check: $(v1c=$V), $(v1d=$VX) = vsplit $v1cd
|
||||
; check: $(v1cl=$V), $(v1ch=$VX) = isplit_lohi $v1c
|
||||
; check: $(v1dl=$V), $(v1dh=$VX) = isplit_lohi $v1d
|
||||
; check: return $v1al, $v1ah, $v1bl, $v1bh, $v1cl, $v1ch, $v1dl, $v1dh
|
||||
return v1
|
||||
}
|
||||
|
||||
function parse_encoding(i32 [%x5]) -> i32 [%x10] {
|
||||
; check: function parse_encoding(i32 [%x5]) -> i32 [%x10] {
|
||||
; check: function parse_encoding(i32 [%x5]) -> i32 [%x10] {
|
||||
|
||||
sig0 = signature(i32 [%x10]) -> i32 [%x10]
|
||||
; check: sig0 = signature(i32 [%x10]) -> i32 [%x10]
|
||||
; check: sig0 = signature(i32 [%x10]) -> i32 [%x10]
|
||||
|
||||
sig1 = signature(i32 [%x10], i32 [%x11]) -> b1 [%x10]
|
||||
; check: sig1 = signature(i32 [%x10], i32 [%x11]) -> b1 [%x10]
|
||||
; check: sig1 = signature(i32 [%x10], i32 [%x11]) -> b1 [%x10]
|
||||
|
||||
sig2 = signature(f32 [%f10], i32 [%x12], i32 [%x13]) -> f64 [%f10]
|
||||
; check: sig2 = signature(f32 [%f10], i32 [%x12], i32 [%x13]) -> f64 [%f10]
|
||||
; check: sig2 = signature(f32 [%f10], i32 [%x12], i32 [%x13]) -> f64 [%f10]
|
||||
|
||||
; Arguments on stack where not necessary
|
||||
; Arguments on stack where not necessary
|
||||
sig3 = signature(f64 [%f10], i32 [0], i32 [4]) -> f64 [%f10]
|
||||
; check: sig3 = signature(f64 [%f10], i32 [0], i32 [4]) -> f64 [%f10]
|
||||
; check: sig3 = signature(f64 [%f10], i32 [0], i32 [4]) -> f64 [%f10]
|
||||
|
||||
; Stack argument before register argument
|
||||
; Stack argument before register argument
|
||||
sig4 = signature(f32 [72], i32 [%x10])
|
||||
; check: sig4 = signature(f32 [72], i32 [%x10])
|
||||
; check: sig4 = signature(f32 [72], i32 [%x10])
|
||||
|
||||
; Return value on stack
|
||||
; Return value on stack
|
||||
sig5 = signature() -> f32 [0]
|
||||
; check: sig5 = signature() -> f32 [0]
|
||||
; check: sig5 = signature() -> f32 [0]
|
||||
|
||||
; function + signature
|
||||
; function + signature
|
||||
fn15 = function bar(i32 [%x10]) -> b1 [%x10]
|
||||
; check: sig6 = signature(i32 [%x10]) -> b1 [%x10]
|
||||
; nextln: fn0 = sig6 bar
|
||||
; check: sig6 = signature(i32 [%x10]) -> b1 [%x10]
|
||||
; nextln: fn0 = sig6 bar
|
||||
|
||||
ebb0(v0: i32):
|
||||
return_reg v0
|
||||
}
|
||||
return v0
|
||||
}
|
||||
|
||||
@@ -14,9 +14,10 @@
|
||||
//! from the encoding recipes, and solved later by the register allocator.
|
||||
|
||||
use abi::{legalize_abi_value, ValueConversion};
|
||||
use ir::{Function, Cursor, DataFlowGraph, InstructionData, Opcode, InstBuilder, Ebb, Type, Value,
|
||||
ArgumentType};
|
||||
use ir::{Function, Cursor, DataFlowGraph, InstructionData, Opcode, Inst, InstBuilder, Ebb, Type,
|
||||
Value, Signature, SigRef, ArgumentType};
|
||||
use ir::condcodes::IntCC;
|
||||
use ir::instructions::CallInfo;
|
||||
use isa::{TargetIsa, Legalize};
|
||||
|
||||
/// Legalize `func` for `isa`.
|
||||
@@ -36,6 +37,21 @@ pub fn legalize_function(func: &mut Function, isa: &TargetIsa) {
|
||||
let mut prev_pos = pos.position();
|
||||
|
||||
while let Some(inst) = pos.next_inst() {
|
||||
let opcode = func.dfg[inst].opcode();
|
||||
|
||||
// Check for ABI boundaries that need to be converted to the legalized signature.
|
||||
if opcode.is_call() && handle_call_abi(&mut func.dfg, &mut pos) {
|
||||
// Go back and legalize the inserted argument conversion instructions.
|
||||
pos.set_position(prev_pos);
|
||||
continue;
|
||||
}
|
||||
|
||||
if opcode.is_return() && handle_return_abi(&mut func.dfg, &mut pos, &func.signature) {
|
||||
// Go back and legalize the inserted return value conversion instructions.
|
||||
pos.set_position(prev_pos);
|
||||
continue;
|
||||
}
|
||||
|
||||
match isa.encode(&func.dfg, &func.dfg[inst]) {
|
||||
Ok(encoding) => *func.encodings.ensure(inst) = encoding,
|
||||
Err(action) => {
|
||||
@@ -201,3 +217,232 @@ fn convert_from_abi(dfg: &mut DataFlowGraph,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert `value` to match an ABI signature by inserting instructions at `pos`.
|
||||
///
|
||||
/// This may require expanding the value to multiple ABI arguments. The conversion process is
|
||||
/// recursive and controlled by the `put_arg` closure. When a candidate argument value is presented
|
||||
/// to the closure, it will perform one of two actions:
|
||||
///
|
||||
/// 1. If the suggested argument has an acceptable value type, consume it by adding it to the list
|
||||
/// of arguments and return `None`.
|
||||
/// 2. If the suggested argument doesn't have the right value type, don't change anything, but
|
||||
/// return the `ArgumentType` that is needed.
|
||||
///
|
||||
fn convert_to_abi<PutArg>(dfg: &mut DataFlowGraph,
|
||||
pos: &mut Cursor,
|
||||
value: Value,
|
||||
put_arg: &mut PutArg)
|
||||
where PutArg: FnMut(&mut DataFlowGraph, Value) -> Option<ArgumentType>
|
||||
{
|
||||
// Start by invoking the closure to either terminate the recursion or get the argument type
|
||||
// we're trying to match.
|
||||
let arg_type = match put_arg(dfg, value) {
|
||||
None => return,
|
||||
Some(t) => t,
|
||||
};
|
||||
|
||||
let ty = dfg.value_type(value);
|
||||
match legalize_abi_value(ty, &arg_type) {
|
||||
ValueConversion::IntSplit => {
|
||||
let (lo, hi) = dfg.ins(pos).isplit_lohi(value);
|
||||
convert_to_abi(dfg, pos, lo, put_arg);
|
||||
convert_to_abi(dfg, pos, hi, put_arg);
|
||||
}
|
||||
ValueConversion::VectorSplit => {
|
||||
let (lo, hi) = dfg.ins(pos).vsplit(value);
|
||||
convert_to_abi(dfg, pos, lo, put_arg);
|
||||
convert_to_abi(dfg, pos, hi, put_arg);
|
||||
}
|
||||
ValueConversion::IntBits => {
|
||||
assert!(!ty.is_int());
|
||||
let abi_ty = Type::int(ty.bits()).expect("Invalid type for conversion");
|
||||
let arg = dfg.ins(pos).bitcast(abi_ty, value);
|
||||
convert_to_abi(dfg, pos, arg, put_arg);
|
||||
}
|
||||
ValueConversion::Sext(abi_ty) => {
|
||||
let arg = dfg.ins(pos).sextend(abi_ty, value);
|
||||
convert_to_abi(dfg, pos, arg, put_arg);
|
||||
}
|
||||
ValueConversion::Uext(abi_ty) => {
|
||||
let arg = dfg.ins(pos).uextend(abi_ty, value);
|
||||
convert_to_abi(dfg, pos, arg, put_arg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Check if a sequence of arguments match a desired sequence of argument types.
|
||||
fn check_arg_types<Args>(dfg: &DataFlowGraph, args: Args, types: &[ArgumentType]) -> bool
|
||||
where Args: IntoIterator<Item = Value>
|
||||
{
|
||||
let mut n = 0;
|
||||
for arg in args {
|
||||
match types.get(n) {
|
||||
Some(&ArgumentType { value_type, .. }) => {
|
||||
if dfg.value_type(arg) != value_type {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
None => return false,
|
||||
}
|
||||
n += 1
|
||||
}
|
||||
|
||||
// Also verify that the number of arguments matches.
|
||||
n == types.len()
|
||||
}
|
||||
|
||||
/// Check if the arguments of the call `inst` match the signature.
|
||||
///
|
||||
/// Returns `None` if the signature matches and no changes are needed, or `Some(sig_ref)` if the
|
||||
/// signature doesn't match.
|
||||
fn check_call_signature(dfg: &DataFlowGraph, inst: Inst) -> Option<SigRef> {
|
||||
// Extract the signature and argument values.
|
||||
let (sig_ref, args) = match dfg[inst].analyze_call(&dfg.value_lists) {
|
||||
CallInfo::Direct(func, args) => (dfg.ext_funcs[func].signature, args),
|
||||
CallInfo::Indirect(sig_ref, args) => (sig_ref, args),
|
||||
CallInfo::NotACall => panic!("Expected call, got {:?}", dfg[inst]),
|
||||
};
|
||||
let sig = &dfg.signatures[sig_ref];
|
||||
|
||||
if check_arg_types(dfg, args.iter().cloned(), &sig.argument_types[..]) &&
|
||||
check_arg_types(dfg, dfg.inst_results(inst), &sig.return_types[..]) {
|
||||
// All types check out.
|
||||
None
|
||||
} else {
|
||||
// Call types need fixing.
|
||||
Some(sig_ref)
|
||||
}
|
||||
}
|
||||
|
||||
/// Insert ABI conversion code for the arguments to the call or return instruction at `pos`.
|
||||
///
|
||||
/// - `abi_args` is the number of arguments that the ABI signature requires.
|
||||
/// - `get_abi_type` is a closure that can provide the desired `ArgumentType` for a given ABI
|
||||
/// argument number in `0..abi_args`.
|
||||
///
|
||||
fn legalize_inst_arguments<ArgType>(dfg: &mut DataFlowGraph,
|
||||
pos: &mut Cursor,
|
||||
abi_args: usize,
|
||||
mut get_abi_type: ArgType)
|
||||
where ArgType: FnMut(&DataFlowGraph, usize) -> ArgumentType
|
||||
{
|
||||
let inst = pos.current_inst().expect("Cursor must point to a call instruction");
|
||||
|
||||
// Lift the value list out of the call instruction so we modify it.
|
||||
let mut vlist = dfg[inst].take_value_list().expect("Call must have a value list");
|
||||
|
||||
// The value list contains all arguments to the instruction, including the callee on an
|
||||
// indirect call which isn't part of the call arguments that must match the ABI signature.
|
||||
// Figure out how many fixed values are at the front of the list. We won't touch those.
|
||||
let fixed_values = dfg[inst].opcode().constraints().fixed_value_arguments();
|
||||
let have_args = vlist.len(&dfg.value_lists) - fixed_values;
|
||||
|
||||
// Grow the value list to the right size and shift all the existing arguments to the right.
|
||||
// This lets us write the new argument values into the list without overwriting the old
|
||||
// arguments.
|
||||
//
|
||||
// Before:
|
||||
//
|
||||
// <--> fixed_values
|
||||
// <-----------> have_args
|
||||
// [FFFFOOOOOOOOOOOOO]
|
||||
//
|
||||
// After grow_at():
|
||||
//
|
||||
// <--> fixed_values
|
||||
// <-----------> have_args
|
||||
// <------------------> abi_args
|
||||
// [FFFF-------OOOOOOOOOOOOO]
|
||||
// ^
|
||||
// old_arg_offset
|
||||
//
|
||||
// After writing the new arguments:
|
||||
//
|
||||
// <--> fixed_values
|
||||
// <------------------> abi_args
|
||||
// [FFFFNNNNNNNNNNNNNNNNNNNN]
|
||||
//
|
||||
vlist.grow_at(fixed_values, abi_args - have_args, &mut dfg.value_lists);
|
||||
let old_arg_offset = fixed_values + abi_args - have_args;
|
||||
|
||||
let mut abi_arg = 0;
|
||||
for old_arg in 0..have_args {
|
||||
let old_value = vlist.get(old_arg_offset + old_arg, &dfg.value_lists).unwrap();
|
||||
convert_to_abi(dfg,
|
||||
pos,
|
||||
old_value,
|
||||
&mut |dfg, arg| {
|
||||
let abi_type = get_abi_type(dfg, abi_arg);
|
||||
if dfg.value_type(arg) == abi_type.value_type {
|
||||
// This is the argument type we need.
|
||||
vlist.as_mut_slice(&mut dfg.value_lists)[fixed_values + abi_arg] = arg;
|
||||
abi_arg += 1;
|
||||
None
|
||||
} else {
|
||||
// Nope, `arg` needs to be converted.
|
||||
Some(abi_type)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Put the modified value list back.
|
||||
dfg[inst].put_value_list(vlist);
|
||||
}
|
||||
|
||||
/// Insert ABI conversion code before and after the call instruction at `pos`.
|
||||
///
|
||||
/// Instructions inserted before the call will compute the appropriate ABI values for the
|
||||
/// callee's new ABI-legalized signature. The function call arguments are rewritten in place to
|
||||
/// match the new signature.
|
||||
///
|
||||
/// Instructions will be inserted after the call to convert returned ABI values back to the
|
||||
/// original return values. The call's result values will be adapted to match the new signature.
|
||||
///
|
||||
/// Returns `true` if any instructions were inserted.
|
||||
fn handle_call_abi(dfg: &mut DataFlowGraph, pos: &mut Cursor) -> bool {
|
||||
let inst = pos.current_inst().expect("Cursor must point to a call instruction");
|
||||
|
||||
// Start by checking if the argument types already match the signature.
|
||||
let sig_ref = match check_call_signature(dfg, inst) {
|
||||
None => return false,
|
||||
Some(s) => s,
|
||||
};
|
||||
|
||||
// OK, we need to fix the call arguments to match the ABI signature.
|
||||
let abi_args = dfg.signatures[sig_ref].argument_types.len();
|
||||
legalize_inst_arguments(dfg,
|
||||
pos,
|
||||
abi_args,
|
||||
|dfg, abi_arg| dfg.signatures[sig_ref].argument_types[abi_arg]);
|
||||
|
||||
// TODO: Convert return values.
|
||||
|
||||
// Yes, we changed stuff.
|
||||
true
|
||||
}
|
||||
|
||||
/// Insert ABI conversion code before and after the call instruction at `pos`.
|
||||
///
|
||||
/// Return `true` if any instructions were inserted.
|
||||
fn handle_return_abi(dfg: &mut DataFlowGraph, pos: &mut Cursor, sig: &Signature) -> bool {
|
||||
let inst = pos.current_inst().expect("Cursor must point to a return instruction");
|
||||
|
||||
// Check if the returned types already match the signature.
|
||||
let fixed_values = dfg[inst].opcode().constraints().fixed_value_arguments();
|
||||
if check_arg_types(dfg,
|
||||
dfg[inst]
|
||||
.arguments(&dfg.value_lists)
|
||||
.iter()
|
||||
.skip(fixed_values)
|
||||
.cloned(),
|
||||
&sig.return_types[..]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
let abi_args = sig.return_types.len();
|
||||
legalize_inst_arguments(dfg, pos, abi_args, |_, abi_arg| sig.return_types[abi_arg]);
|
||||
|
||||
// Yes, we changed stuff.
|
||||
true
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user