Files
wasmtime/lib/cretonne/src/legalizer.rs
Jakob Stoklund Olesen d15f25844a Legalize ABI arguments to call and return instructions.
The type signatures of functions can change when they are legalized for
a specific ABI. This means that all call and return instructions need to
be rewritten to use the correct arguments.

- Fix arguments to call instructions.
- Fix arguments to return instructions.

TBD:

- Fix return values from call instructions.
2017-03-15 14:35:22 -07:00

449 lines
19 KiB
Rust

//! Legalize instructions.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.
use abi::{legalize_abi_value, ValueConversion};
use ir::{Function, Cursor, DataFlowGraph, InstructionData, Opcode, Inst, InstBuilder, Ebb, Type,
Value, Signature, SigRef, ArgumentType};
use ir::condcodes::IntCC;
use ir::instructions::CallInfo;
use isa::{TargetIsa, Legalize};
/// Legalize `func` for `isa`.
///
/// - Transform any instructions that don't have a legal representation in `isa`.
/// - Fill out `func.encodings`.
///
pub fn legalize_function(func: &mut Function, isa: &TargetIsa) {
legalize_signatures(func, isa);
// TODO: This is very simplified and incomplete.
func.encodings.resize(func.dfg.num_insts());
let mut pos = Cursor::new(&mut func.layout);
while let Some(_ebb) = pos.next_ebb() {
// Keep track of the cursor position before the instruction being processed, so we can
// double back when replacing instructions.
let mut prev_pos = pos.position();
while let Some(inst) = pos.next_inst() {
let opcode = func.dfg[inst].opcode();
// Check for ABI boundaries that need to be converted to the legalized signature.
if opcode.is_call() && handle_call_abi(&mut func.dfg, &mut pos) {
// Go back and legalize the inserted argument conversion instructions.
pos.set_position(prev_pos);
continue;
}
if opcode.is_return() && handle_return_abi(&mut func.dfg, &mut pos, &func.signature) {
// Go back and legalize the inserted return value conversion instructions.
pos.set_position(prev_pos);
continue;
}
match isa.encode(&func.dfg, &func.dfg[inst]) {
Ok(encoding) => *func.encodings.ensure(inst) = encoding,
Err(action) => {
// We should transform the instruction into legal equivalents.
// Possible strategies are:
// 1. Legalize::Expand: Expand instruction into sequence of legal instructions.
// Possibly iteratively. ()
// 2. Legalize::Narrow: Split the controlling type variable into high and low
// parts. This applies both to SIMD vector types which can be halved and to
// integer types such as `i64` used on a 32-bit ISA. ().
// 3. TODO: Promote the controlling type variable to a larger type. This
// typically means expressing `i8` and `i16` arithmetic in terms if `i32`
// operations on RISC targets. (It may or may not be beneficial to promote
// small vector types versus splitting them.)
// 4. TODO: Convert to library calls. For example, floating point operations on
// an ISA with no IEEE 754 support.
let changed = match action {
Legalize::Expand => expand(&mut pos, &mut func.dfg),
Legalize::Narrow => narrow(&mut pos, &mut func.dfg),
};
// If the current instruction was replaced, we need to double back and revisit
// the expanded sequence. This is both to assign encodings and possible to
// expand further.
// There's a risk of infinite looping here if the legalization patterns are
// unsound. Should we attempt to detect that?
if changed {
pos.set_position(prev_pos);
}
}
}
// Remember this position in case we need to double back.
prev_pos = pos.position();
}
}
}
// Include legalization patterns that were generated by `gen_legalizer.py` from the `XForms` in
// `meta/cretonne/legalize.py`.
//
// Concretely, this defines private functions `narrow()`, and `expand()`.
include!(concat!(env!("OUT_DIR"), "/legalizer.rs"));
/// Legalize all the function signatures in `func`.
///
/// This changes all signatures to be ABI-compliant with full `ArgumentLoc` annotations. It doesn't
/// change the entry block arguments, calls, or return instructions, so this can leave the function
/// in a state with type discrepancies.
fn legalize_signatures(func: &mut Function, isa: &TargetIsa) {
isa.legalize_signature(&mut func.signature);
for sig in func.dfg.signatures.keys() {
isa.legalize_signature(&mut func.dfg.signatures[sig]);
}
if let Some(entry) = func.layout.entry_block() {
legalize_entry_arguments(func, entry);
}
}
/// Legalize the entry block arguments after `func`'s signature has been legalized.
///
/// The legalized signature may contain more arguments than the original signature, and the
/// argument types have been changed. This function goes through the arguments to the entry EBB and
/// replaces them with arguments of the right type for the ABI.
///
/// The original entry EBB arguments are computed from the new ABI arguments by code inserted at
/// the top of the entry block.
fn legalize_entry_arguments(func: &mut Function, entry: Ebb) {
// Insert position for argument conversion code.
// We want to insert instructions before the first instruction in the entry block.
// If the entry block is empty, append instructions to it instead.
let mut pos = Cursor::new(&mut func.layout);
pos.goto_top(entry);
pos.next_inst();
// Keep track of the argument types in the ABI-legalized signature.
let abi_types = &func.signature.argument_types;
let mut abi_arg = 0;
// Process the EBB arguments one at a time, possibly replacing one argument with multiple new
// ones. We do this by detaching the entry EBB arguments first.
let mut next_arg = func.dfg.take_ebb_args(entry);
while let Some(arg) = next_arg {
// Get the next argument before we mutate `arg`.
next_arg = func.dfg.next_ebb_arg(arg);
let arg_type = func.dfg.value_type(arg);
if arg_type == abi_types[abi_arg].value_type {
// No value translation is necessary, this argument matches the ABI type.
// Just use the original EBB argument value. This is the most common case.
func.dfg.put_ebb_arg(entry, arg);
abi_arg += 1;
} else {
// Compute the value we want for `arg` from the legalized ABI arguments.
let converted = convert_from_abi(&mut func.dfg,
&mut pos,
entry,
&mut abi_arg,
abi_types,
arg_type);
// The old `arg` is no longer an attached EBB argument, but there are probably still
// uses of the value. Make it an alias to the converted value.
func.dfg.change_to_alias(arg, converted);
}
}
}
/// Compute original value of type `ty` from the legalized ABI arguments beginning at `abi_arg`.
///
/// Update `abi_arg` to reflect the ABI arguments consumed and return the computed value.
fn convert_from_abi(dfg: &mut DataFlowGraph,
pos: &mut Cursor,
entry: Ebb,
abi_arg: &mut usize,
abi_types: &[ArgumentType],
ty: Type)
-> Value {
// Terminate the recursion when we get the desired type.
if ty == abi_types[*abi_arg].value_type {
return dfg.append_ebb_arg(entry, ty);
}
// Reconstruct how `ty` was legalized into the argument at `abi_arg`.
let conversion = legalize_abi_value(ty, &abi_types[*abi_arg]);
// The conversion describes value to ABI argument. We implement the reverse conversion here.
match conversion {
// Construct a `ty` by concatenating two ABI integers.
ValueConversion::IntSplit => {
let abi_ty = ty.half_width().expect("Invalid type for conversion");
let lo = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty);
let hi = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty);
dfg.ins(pos).iconcat_lohi(lo, hi)
}
// Construct a `ty` by concatenating two halves of a vector.
ValueConversion::VectorSplit => {
let abi_ty = ty.half_vector().expect("Invalid type for conversion");
let lo = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty);
let hi = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty);
dfg.ins(pos).vconcat(lo, hi)
}
// Construct a `ty` by bit-casting from an integer type.
ValueConversion::IntBits => {
assert!(!ty.is_int());
let abi_ty = Type::int(ty.bits()).expect("Invalid type for conversion");
let arg = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty);
dfg.ins(pos).bitcast(ty, arg)
}
// ABI argument is a sign-extended version of the value we want.
ValueConversion::Sext(abi_ty) => {
let arg = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty);
// TODO: Currently, we don't take advantage of the ABI argument being sign-extended.
// We could insert an `assert_sreduce` which would fold with a following `sextend` of
// this value.
dfg.ins(pos).ireduce(ty, arg)
}
ValueConversion::Uext(abi_ty) => {
let arg = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty);
// TODO: Currently, we don't take advantage of the ABI argument being sign-extended.
// We could insert an `assert_ureduce` which would fold with a following `uextend` of
// this value.
dfg.ins(pos).ireduce(ty, arg)
}
}
}
/// Convert `value` to match an ABI signature by inserting instructions at `pos`.
///
/// This may require expanding the value to multiple ABI arguments. The conversion process is
/// recursive and controlled by the `put_arg` closure. When a candidate argument value is presented
/// to the closure, it will perform one of two actions:
///
/// 1. If the suggested argument has an acceptable value type, consume it by adding it to the list
/// of arguments and return `None`.
/// 2. If the suggested argument doesn't have the right value type, don't change anything, but
/// return the `ArgumentType` that is needed.
///
fn convert_to_abi<PutArg>(dfg: &mut DataFlowGraph,
pos: &mut Cursor,
value: Value,
put_arg: &mut PutArg)
where PutArg: FnMut(&mut DataFlowGraph, Value) -> Option<ArgumentType>
{
// Start by invoking the closure to either terminate the recursion or get the argument type
// we're trying to match.
let arg_type = match put_arg(dfg, value) {
None => return,
Some(t) => t,
};
let ty = dfg.value_type(value);
match legalize_abi_value(ty, &arg_type) {
ValueConversion::IntSplit => {
let (lo, hi) = dfg.ins(pos).isplit_lohi(value);
convert_to_abi(dfg, pos, lo, put_arg);
convert_to_abi(dfg, pos, hi, put_arg);
}
ValueConversion::VectorSplit => {
let (lo, hi) = dfg.ins(pos).vsplit(value);
convert_to_abi(dfg, pos, lo, put_arg);
convert_to_abi(dfg, pos, hi, put_arg);
}
ValueConversion::IntBits => {
assert!(!ty.is_int());
let abi_ty = Type::int(ty.bits()).expect("Invalid type for conversion");
let arg = dfg.ins(pos).bitcast(abi_ty, value);
convert_to_abi(dfg, pos, arg, put_arg);
}
ValueConversion::Sext(abi_ty) => {
let arg = dfg.ins(pos).sextend(abi_ty, value);
convert_to_abi(dfg, pos, arg, put_arg);
}
ValueConversion::Uext(abi_ty) => {
let arg = dfg.ins(pos).uextend(abi_ty, value);
convert_to_abi(dfg, pos, arg, put_arg);
}
}
}
/// Check if a sequence of arguments match a desired sequence of argument types.
fn check_arg_types<Args>(dfg: &DataFlowGraph, args: Args, types: &[ArgumentType]) -> bool
where Args: IntoIterator<Item = Value>
{
let mut n = 0;
for arg in args {
match types.get(n) {
Some(&ArgumentType { value_type, .. }) => {
if dfg.value_type(arg) != value_type {
return false;
}
}
None => return false,
}
n += 1
}
// Also verify that the number of arguments matches.
n == types.len()
}
/// Check if the arguments of the call `inst` match the signature.
///
/// Returns `None` if the signature matches and no changes are needed, or `Some(sig_ref)` if the
/// signature doesn't match.
fn check_call_signature(dfg: &DataFlowGraph, inst: Inst) -> Option<SigRef> {
// Extract the signature and argument values.
let (sig_ref, args) = match dfg[inst].analyze_call(&dfg.value_lists) {
CallInfo::Direct(func, args) => (dfg.ext_funcs[func].signature, args),
CallInfo::Indirect(sig_ref, args) => (sig_ref, args),
CallInfo::NotACall => panic!("Expected call, got {:?}", dfg[inst]),
};
let sig = &dfg.signatures[sig_ref];
if check_arg_types(dfg, args.iter().cloned(), &sig.argument_types[..]) &&
check_arg_types(dfg, dfg.inst_results(inst), &sig.return_types[..]) {
// All types check out.
None
} else {
// Call types need fixing.
Some(sig_ref)
}
}
/// Insert ABI conversion code for the arguments to the call or return instruction at `pos`.
///
/// - `abi_args` is the number of arguments that the ABI signature requires.
/// - `get_abi_type` is a closure that can provide the desired `ArgumentType` for a given ABI
/// argument number in `0..abi_args`.
///
fn legalize_inst_arguments<ArgType>(dfg: &mut DataFlowGraph,
pos: &mut Cursor,
abi_args: usize,
mut get_abi_type: ArgType)
where ArgType: FnMut(&DataFlowGraph, usize) -> ArgumentType
{
let inst = pos.current_inst().expect("Cursor must point to a call instruction");
// Lift the value list out of the call instruction so we modify it.
let mut vlist = dfg[inst].take_value_list().expect("Call must have a value list");
// The value list contains all arguments to the instruction, including the callee on an
// indirect call which isn't part of the call arguments that must match the ABI signature.
// Figure out how many fixed values are at the front of the list. We won't touch those.
let fixed_values = dfg[inst].opcode().constraints().fixed_value_arguments();
let have_args = vlist.len(&dfg.value_lists) - fixed_values;
// Grow the value list to the right size and shift all the existing arguments to the right.
// This lets us write the new argument values into the list without overwriting the old
// arguments.
//
// Before:
//
// <--> fixed_values
// <-----------> have_args
// [FFFFOOOOOOOOOOOOO]
//
// After grow_at():
//
// <--> fixed_values
// <-----------> have_args
// <------------------> abi_args
// [FFFF-------OOOOOOOOOOOOO]
// ^
// old_arg_offset
//
// After writing the new arguments:
//
// <--> fixed_values
// <------------------> abi_args
// [FFFFNNNNNNNNNNNNNNNNNNNN]
//
vlist.grow_at(fixed_values, abi_args - have_args, &mut dfg.value_lists);
let old_arg_offset = fixed_values + abi_args - have_args;
let mut abi_arg = 0;
for old_arg in 0..have_args {
let old_value = vlist.get(old_arg_offset + old_arg, &dfg.value_lists).unwrap();
convert_to_abi(dfg,
pos,
old_value,
&mut |dfg, arg| {
let abi_type = get_abi_type(dfg, abi_arg);
if dfg.value_type(arg) == abi_type.value_type {
// This is the argument type we need.
vlist.as_mut_slice(&mut dfg.value_lists)[fixed_values + abi_arg] = arg;
abi_arg += 1;
None
} else {
// Nope, `arg` needs to be converted.
Some(abi_type)
}
});
}
// Put the modified value list back.
dfg[inst].put_value_list(vlist);
}
/// Insert ABI conversion code before and after the call instruction at `pos`.
///
/// Instructions inserted before the call will compute the appropriate ABI values for the
/// callee's new ABI-legalized signature. The function call arguments are rewritten in place to
/// match the new signature.
///
/// Instructions will be inserted after the call to convert returned ABI values back to the
/// original return values. The call's result values will be adapted to match the new signature.
///
/// Returns `true` if any instructions were inserted.
fn handle_call_abi(dfg: &mut DataFlowGraph, pos: &mut Cursor) -> bool {
let inst = pos.current_inst().expect("Cursor must point to a call instruction");
// Start by checking if the argument types already match the signature.
let sig_ref = match check_call_signature(dfg, inst) {
None => return false,
Some(s) => s,
};
// OK, we need to fix the call arguments to match the ABI signature.
let abi_args = dfg.signatures[sig_ref].argument_types.len();
legalize_inst_arguments(dfg,
pos,
abi_args,
|dfg, abi_arg| dfg.signatures[sig_ref].argument_types[abi_arg]);
// TODO: Convert return values.
// Yes, we changed stuff.
true
}
/// Insert ABI conversion code before and after the call instruction at `pos`.
///
/// Return `true` if any instructions were inserted.
fn handle_return_abi(dfg: &mut DataFlowGraph, pos: &mut Cursor, sig: &Signature) -> bool {
let inst = pos.current_inst().expect("Cursor must point to a return instruction");
// Check if the returned types already match the signature.
let fixed_values = dfg[inst].opcode().constraints().fixed_value_arguments();
if check_arg_types(dfg,
dfg[inst]
.arguments(&dfg.value_lists)
.iter()
.skip(fixed_values)
.cloned(),
&sig.return_types[..]) {
return false;
}
let abi_args = sig.return_types.len();
legalize_inst_arguments(dfg, pos, abi_args, |_, abi_arg| sig.return_types[abi_arg]);
// Yes, we changed stuff.
true
}