peepmatic: Introduce the peepmatic-automata crate
The `peepmatic-automata` crate builds and queries finite-state transducer automata. A transducer is a type of automata that has not only an input that it accepts or rejects, but also an output. While regular automata check whether an input string is in the set that the automata accepts, a transducer maps the input strings to values. A regular automata is sort of a compressed, immutable set, and a transducer is sort of a compressed, immutable key-value dictionary. A [trie] compresses a set of strings or map from a string to a value by sharing prefixes of the input string. Automata and transducers can compress even better: they can share both prefixes and suffixes. [*Index 1,600,000,000 Keys with Automata and Rust* by Andrew Gallant (aka burntsushi)][burntsushi-blog-post] is a top-notch introduction. If you're looking for a general-purpose transducers crate in Rust you're probably looking for [the `fst` crate][fst-crate]. While this implementation is fully generic and has no dependencies, its feature set is specific to `peepmatic`'s needs: * We need to associate extra data with each state: the match operation to evaluate next. * We can't provide the full input string up front, so this crate must support incremental lookups. This is because the peephole optimizer is computing the input string incrementally and dynamically: it looks at the current state's match operation, evaluates it, and then uses the result as the next character of the input string. * We also support incremental insertion and output when building the transducer. This is necessary because we don't want to emit output values that bind a match on an optimization's left-hand side's pattern (for example) until after we've succeeded in matching it, which might not happen until we've reached the n^th state. * We need to support generic output values. The `fst` crate only supports `u64` outputs, while we need to build up an optimization's right-hand side instructions. This implementation is based on [*Direct Construction of Minimal Acyclic Subsequential Transducers* by Mihov and Maurel][paper]. That means that keys must be inserted in lexicographic order during construction. [trie]: https://en.wikipedia.org/wiki/Trie [burntsushi-blog-post]: https://blog.burntsushi.net/transducers/#ordered-maps [fst-crate]: https://crates.io/crates/fst [paper]: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.3698&rep=rep1&type=pdf
This commit is contained in:
195
cranelift/peepmatic/crates/automata/src/serde_impls.rs
Normal file
195
cranelift/peepmatic/crates/automata/src/serde_impls.rs
Normal file
@@ -0,0 +1,195 @@
|
||||
//! `serde::Serialize` and `serde::Deserialize` implementations for `Automaton`.
|
||||
//!
|
||||
//! Rather than prefix each serialized field with which field it is, we always
|
||||
//! serialize fields in alphabetical order. Make sure to maintain this if you
|
||||
//! add or remove fields!
|
||||
//!
|
||||
//! Each time you add/remove a field, or change serialization in any other way,
|
||||
//! make sure to bump `SERIALIZATION_VERSION`.
|
||||
|
||||
use crate::{Automaton, Output, State};
|
||||
use serde::{
|
||||
de::{self, Deserializer, SeqAccess, Visitor},
|
||||
ser::SerializeTupleStruct,
|
||||
Deserialize, Serialize, Serializer,
|
||||
};
|
||||
use std::collections::BTreeMap;
|
||||
use std::fmt;
|
||||
use std::hash::Hash;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
const SERIALIZATION_VERSION: u32 = 1;
|
||||
|
||||
impl Serialize for State {
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
serializer.serialize_u32(self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'de> Deserialize<'de> for State {
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where
|
||||
D: Deserializer<'de>,
|
||||
{
|
||||
Ok(State(deserializer.deserialize_u32(U32Visitor)?))
|
||||
}
|
||||
}
|
||||
|
||||
struct U32Visitor;
|
||||
|
||||
impl<'de> Visitor<'de> for U32Visitor {
|
||||
type Value = u32;
|
||||
|
||||
fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
f.write_str("an integer between `0` and `2^32 - 1`")
|
||||
}
|
||||
|
||||
fn visit_u8<E>(self, value: u8) -> Result<Self::Value, E>
|
||||
where
|
||||
E: de::Error,
|
||||
{
|
||||
Ok(u32::from(value))
|
||||
}
|
||||
|
||||
fn visit_u32<E>(self, value: u32) -> Result<Self::Value, E>
|
||||
where
|
||||
E: de::Error,
|
||||
{
|
||||
Ok(value)
|
||||
}
|
||||
|
||||
fn visit_u64<E>(self, value: u64) -> Result<Self::Value, E>
|
||||
where
|
||||
E: de::Error,
|
||||
{
|
||||
use std::u32;
|
||||
if value <= u64::from(u32::MAX) {
|
||||
Ok(value as u32)
|
||||
} else {
|
||||
Err(E::custom(format!("u32 out of range: {}", value)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<TAlphabet, TState, TOutput> Serialize for Automaton<TAlphabet, TState, TOutput>
|
||||
where
|
||||
TAlphabet: Serialize + Clone + Eq + Hash + Ord,
|
||||
TState: Serialize + Clone + Eq + Hash,
|
||||
TOutput: Serialize + Output,
|
||||
{
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
let Automaton {
|
||||
final_states,
|
||||
start_state,
|
||||
state_data,
|
||||
transitions,
|
||||
} = self;
|
||||
|
||||
let mut s = serializer.serialize_tuple_struct("Automaton", 5)?;
|
||||
s.serialize_field(&SERIALIZATION_VERSION)?;
|
||||
s.serialize_field(final_states)?;
|
||||
s.serialize_field(start_state)?;
|
||||
s.serialize_field(state_data)?;
|
||||
s.serialize_field(transitions)?;
|
||||
s.end()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'de, TAlphabet, TState, TOutput> Deserialize<'de> for Automaton<TAlphabet, TState, TOutput>
|
||||
where
|
||||
TAlphabet: 'de + Deserialize<'de> + Clone + Eq + Hash + Ord,
|
||||
TState: 'de + Deserialize<'de> + Clone + Eq + Hash,
|
||||
TOutput: 'de + Deserialize<'de> + Output,
|
||||
{
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where
|
||||
D: Deserializer<'de>,
|
||||
{
|
||||
deserializer.deserialize_tuple_struct(
|
||||
"Automaton",
|
||||
5,
|
||||
AutomatonVisitor {
|
||||
phantom: PhantomData,
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
struct AutomatonVisitor<'de, TAlphabet, TState, TOutput>
|
||||
where
|
||||
TAlphabet: 'de + Deserialize<'de> + Clone + Eq + Hash + Ord,
|
||||
TState: 'de + Deserialize<'de> + Clone + Eq + Hash,
|
||||
TOutput: 'de + Deserialize<'de> + Output,
|
||||
{
|
||||
phantom: PhantomData<&'de (TAlphabet, TState, TOutput)>,
|
||||
}
|
||||
|
||||
impl<'de, TAlphabet, TState, TOutput> Visitor<'de>
|
||||
for AutomatonVisitor<'de, TAlphabet, TState, TOutput>
|
||||
where
|
||||
TAlphabet: 'de + Deserialize<'de> + Clone + Eq + Hash + Ord,
|
||||
TState: 'de + Deserialize<'de> + Clone + Eq + Hash,
|
||||
TOutput: 'de + Deserialize<'de> + Output,
|
||||
{
|
||||
type Value = Automaton<TAlphabet, TState, TOutput>;
|
||||
|
||||
fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
f.write_str("Automaton")
|
||||
}
|
||||
|
||||
fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
|
||||
where
|
||||
A: SeqAccess<'de>,
|
||||
{
|
||||
match seq.next_element::<u32>()? {
|
||||
Some(v) if v == SERIALIZATION_VERSION => {}
|
||||
Some(v) => {
|
||||
return Err(de::Error::invalid_value(
|
||||
de::Unexpected::Unsigned(v as u64),
|
||||
&self,
|
||||
));
|
||||
}
|
||||
None => return Err(de::Error::invalid_length(0, &"Automaton expects 5 elements")),
|
||||
}
|
||||
|
||||
let final_states = match seq.next_element::<BTreeMap<State, TOutput>>()? {
|
||||
Some(x) => x,
|
||||
None => return Err(de::Error::invalid_length(1, &"Automaton expects 5 elements")),
|
||||
};
|
||||
|
||||
let start_state = match seq.next_element::<State>()? {
|
||||
Some(x) => x,
|
||||
None => return Err(de::Error::invalid_length(2, &"Automaton expects 5 elements")),
|
||||
};
|
||||
|
||||
let state_data = match seq.next_element::<Vec<Option<TState>>>()? {
|
||||
Some(x) => x,
|
||||
None => return Err(de::Error::invalid_length(3, &"Automaton expects 5 elements")),
|
||||
};
|
||||
|
||||
let transitions = match seq.next_element::<Vec<BTreeMap<TAlphabet, (State, TOutput)>>>()? {
|
||||
Some(x) => x,
|
||||
None => return Err(de::Error::invalid_length(4, &"Automaton expects 5 elements")),
|
||||
};
|
||||
|
||||
let automata = Automaton {
|
||||
final_states,
|
||||
start_state,
|
||||
state_data,
|
||||
transitions,
|
||||
};
|
||||
|
||||
// Ensure that the deserialized automata is well-formed.
|
||||
automata
|
||||
.check_representation()
|
||||
.map_err(|msg| de::Error::custom(msg))?;
|
||||
|
||||
Ok(automata)
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user