ISLE: split algebraic.isle into several files (#6140)

* ISLE: split algebraic.isle into several files

* delete `algebraic.clif`

* Add `README.md`

* Remove old `algebraic.clif` tests

---------

Co-authored-by: Jamey Sharp <jsharp@fastly.com>
This commit is contained in:
Karl Meakin
2023-04-11 22:39:18 +01:00
committed by GitHub
parent 569089e473
commit b9a58148cf
14 changed files with 919 additions and 910 deletions

View File

@@ -221,9 +221,14 @@ fn get_isle_compilations(
inputs: vec![
prelude_isle.clone(),
prelude_opt_isle,
src_opts.join("algebraic.isle"),
src_opts.join("icmp.isle"),
src_opts.join("arithmetic.isle"),
src_opts.join("bitops.isle"),
src_opts.join("cprop.isle"),
src_opts.join("extends.isle"),
src_opts.join("icmp.isle"),
src_opts.join("remat.isle"),
src_opts.join("selects.isle"),
src_opts.join("shifts.isle"),
],
untracked_inputs: vec![clif_opt_isle],
},

View File

@@ -0,0 +1,5 @@
Rules here are allowed to rewrite pure expressions arbitrarily,
using the same inputs as the original, or fewer. In other words, we
cannot pull a new eclass id out of thin air and refer to it, other
than a piece of the input or a new node that we construct; but we
can freely rewrite e.g. `x+y-y` to `x`.

View File

@@ -1,411 +0,0 @@
;; Algebraic optimizations.
;; Rules here are allowed to rewrite pure expressions arbitrarily,
;; using the same inputs as the original, or fewer. In other words, we
;; cannot pull a new eclass id out of thin air and refer to it, other
;; than a piece of the input or a new node that we construct; but we
;; can freely rewrite e.g. `x+y-y` to `x`.
;; Chained `uextend` and `sextend`.
(rule (simplify (uextend ty (uextend _intermediate_ty x)))
(uextend ty x))
(rule (simplify (sextend ty (sextend _intermediate_ty x)))
(sextend ty x))
;; x+0 == 0+x == x.
(rule (simplify (iadd ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (iadd ty
(iconst ty (u64_from_imm64 0))
x))
(subsume x))
;; x-0 == x.
(rule (simplify (isub ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
;; 0-x == (ineg x).
(rule (simplify (isub ty
(iconst ty (u64_from_imm64 0))
x))
(ineg ty x))
;; ineg(ineg(x)) == x.
(rule (simplify (ineg ty (ineg ty x))) (subsume x))
;; ineg(x) * ineg(y) == x*y.
(rule (simplify (imul ty (ineg ty x) (ineg ty y)))
(subsume (imul ty x y)))
;; iabs(ineg(x)) == iabs(x).
(rule (simplify (iabs ty (ineg ty x)))
(iabs ty x))
;; iabs(iabs(x)) == iabs(x).
(rule (simplify (iabs ty inner @ (iabs ty x)))
(subsume inner))
;; x-x == 0.
(rule (simplify (isub (fits_in_64 (ty_int ty)) x x)) (subsume (iconst ty (imm64 0))))
;; x*1 == 1*x == x.
(rule (simplify (imul ty
x
(iconst ty (u64_from_imm64 1))))
(subsume x))
(rule (simplify (imul ty
(iconst ty (u64_from_imm64 1))
x))
(subsume x))
;; x*0 == 0*x == 0.
(rule (simplify (imul ty
_
zero @ (iconst ty (u64_from_imm64 0))))
(subsume zero))
(rule (simplify (imul ty
zero @ (iconst ty (u64_from_imm64 0))
_))
(subsume zero))
;; x*-1 == -1*x == ineg(x).
(rule (simplify (imul ty x (iconst ty c)))
(if-let -1 (i64_sextend_imm64 ty c))
(ineg ty x))
(rule (simplify (imul ty (iconst ty c) x))
(if-let -1 (i64_sextend_imm64 ty c))
(ineg ty x))
;; x/1 == x.
(rule (simplify (sdiv ty
x
(iconst ty (u64_from_imm64 1))))
(subsume x))
(rule (simplify (udiv ty
x
(iconst ty (u64_from_imm64 1))))
(subsume x))
;; x>>0 == x<<0 == x rotr 0 == x rotl 0 == x.
(rule (simplify (ishl ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (ushr ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (sshr ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (rotr ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (rotl ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
;; x | 0 == 0 | x == x | x == x.
(rule (simplify (bor ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (bor ty
(iconst ty (u64_from_imm64 0))
x))
(subsume x))
(rule (simplify (bor ty x x))
(subsume x))
;; x ^ 0 == 0 ^ x == x.
(rule (simplify (bxor ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (bxor ty
(iconst ty (u64_from_imm64 0))
x))
(subsume x))
;; x ^ x == 0.
(rule (simplify (bxor (fits_in_64 (ty_int ty)) x x))
(subsume (iconst ty (imm64 0))))
;; x ^ not(x) == not(x) ^ x == x | not(x) == not(x) | x == -1.
;; This identity also holds for non-integer types, vectors, and wider types.
;; But `iconst` is only valid for integers up to 64 bits wide.
(rule (simplify (bxor (fits_in_64 (ty_int ty)) x (bnot ty x))) (subsume (iconst ty (imm64 (ty_mask ty)))))
(rule (simplify (bxor (fits_in_64 (ty_int ty)) (bnot ty x) x)) (subsume (iconst ty (imm64 (ty_mask ty)))))
(rule (simplify (bor (fits_in_64 (ty_int ty)) x (bnot ty x))) (subsume (iconst ty (imm64 (ty_mask ty)))))
(rule (simplify (bor (fits_in_64 (ty_int ty)) (bnot ty x) x)) (subsume (iconst ty (imm64 (ty_mask ty)))))
;; x & -1 == -1 & x == x & x == x.
(rule (simplify (band ty x x)) (subsume x))
(rule (simplify (band ty x (iconst ty k)))
(if-let -1 (i64_sextend_imm64 ty k))
(subsume x))
(rule (simplify (band ty (iconst ty k) x))
(if-let -1 (i64_sextend_imm64 ty k))
(subsume x))
;; x & 0 == 0 & x == x & not(x) == not(x) & x == 0.
(rule (simplify (band ty _ zero @ (iconst ty (u64_from_imm64 0)))) (subsume zero))
(rule (simplify (band ty zero @ (iconst ty (u64_from_imm64 0)) _)) (subsume zero))
(rule (simplify (band (fits_in_64 (ty_int ty)) x (bnot ty x))) (subsume (iconst ty (imm64 0))))
(rule (simplify (band (fits_in_64 (ty_int ty)) (bnot ty x) x)) (subsume (iconst ty (imm64 0))))
;; not(not(x)) == x.
(rule (simplify (bnot ty (bnot ty x))) (subsume x))
;; DeMorgan's rule (two versions):
;; bnot(bor(x, y)) == band(bnot(x), bnot(y))
(rule (simplify (bnot ty (bor ty x y)))
(band ty (bnot ty x) (bnot ty y)))
;; bnot(band(x, y)) == bor(bnot(x), bnot(y))
(rule (simplify (bnot ty (band t x y)))
(bor ty (bnot ty x) (bnot ty y)))
;; `or(and(x, y), not(y)) == or(x, not(y))`
(rule (simplify (bor ty
(band ty x y)
z @ (bnot ty y)))
(bor ty x z))
;; Duplicate the rule but swap the `bor` operands because `bor` is
;; commutative. We could, of course, add a `simplify` rule to do the commutative
;; swap for all `bor`s but this will bloat the e-graph with many e-nodes. It is
;; cheaper to have additional rules, rather than additional e-nodes, because we
;; amortize their cost via ISLE's smart codegen.
(rule (simplify (bor ty
z @ (bnot ty y)
(band ty x y)))
(bor ty x z))
;; `or(and(x, y), not(y)) == or(x, not(y))` specialized for constants, since
;; otherwise we may not know that `z == not(y)` since we don't generally expand
;; constants in the e-graph.
;;
;; (No need to duplicate for commutative `bor` for this constant version because
;; we move constants to the right.)
(rule (simplify (bor ty
(band ty x (iconst ty (u64_from_imm64 y)))
z @ (iconst ty (u64_from_imm64 zk))))
(if-let $true (u64_eq (u64_and (ty_mask ty) zk)
(u64_and (ty_mask ty) (u64_not y))))
(bor ty x z))
;; x*2 == 2*x == x+x.
(rule (simplify (imul ty x (iconst _ (simm32 2))))
(iadd ty x x))
(rule (simplify (imul ty (iconst _ (simm32 2)) x))
(iadd ty x x))
;; x*c == x<<log2(c) when c is a power of two.
;; Note that the type of `iconst` must be the same as the type of `imul`,
;; so these rules can only fire in situations where it's safe to construct an
;; `iconst` of that type.
(rule (simplify (imul ty x (iconst _ (imm64_power_of_two c))))
(ishl ty x (iconst ty (imm64 c))))
(rule (simplify (imul ty (iconst _ (imm64_power_of_two c)) x))
(ishl ty x (iconst ty (imm64 c))))
;; TODO: strength reduction: div to shifts
;; TODO: div/rem by constants -> magic multiplications
;; `(x >> k) << k` is the same as masking off the bottom `k` bits (regardless if
;; this is a signed or unsigned shift right).
(rule (simplify (ishl (fits_in_64 ty)
(ushr ty x (iconst _ k))
(iconst _ k)))
(let ((mask Imm64 (imm64_shl ty (imm64 0xFFFF_FFFF_FFFF_FFFF) k)))
(band ty x (iconst ty mask))))
(rule (simplify (ishl (fits_in_64 ty)
(sshr ty x (iconst _ k))
(iconst _ k)))
(let ((mask Imm64 (imm64_shl ty (imm64 0xFFFF_FFFF_FFFF_FFFF) k)))
(band ty x (iconst ty mask))))
;; For unsigned shifts, `(x << k) >> k` is the same as masking out the top
;; `k` bits. A similar rule is valid for vectors but this `iconst` mask only
;; works for scalar integers.
(rule (simplify (ushr (fits_in_64 (ty_int ty))
(ishl ty x (iconst _ k))
(iconst _ k)))
(band ty x (iconst ty (imm64_ushr ty (imm64 (ty_mask ty)) k))))
;; For signed shifts, `(x << k) >> k` does sign-extension from `n` bits to
;; `n+k` bits. In the special case where `x` is the result of either `sextend`
;; or `uextend` from `n` bits to `n+k` bits, we can implement this using
;; `sextend`.
(rule (simplify (sshr wide
(ishl wide
(uextend wide x @ (value_type narrow))
(iconst _ shift))
(iconst _ shift)))
(if-let (u64_from_imm64 shift_u64) shift)
(if-let $true (u64_eq shift_u64 (u64_sub (ty_bits_u64 wide) (ty_bits_u64 narrow))))
(sextend wide x))
;; If `k` is smaller than the difference in bit widths of the two types, then
;; the intermediate sign bit comes from the extend op, so the final result is
;; the same as the original extend op.
(rule (simplify (sshr wide
(ishl wide
x @ (uextend wide (value_type narrow))
(iconst _ shift))
(iconst _ shift)))
(if-let (u64_from_imm64 shift_u64) shift)
(if-let $true (u64_lt shift_u64 (u64_sub (ty_bits_u64 wide) (ty_bits_u64 narrow))))
x)
;; If the original extend op was `sextend`, then both of the above cases say
;; the result should also be `sextend`.
(rule (simplify (sshr wide
(ishl wide
x @ (sextend wide (value_type narrow))
(iconst _ shift))
(iconst _ shift)))
(if-let (u64_from_imm64 shift_u64) shift)
(if-let $true (u64_le shift_u64 (u64_sub (ty_bits_u64 wide) (ty_bits_u64 narrow))))
x)
;; Masking out any of the top bits of the result of `uextend` is a no-op. (This
;; is like a cheap version of known-bits analysis.)
(rule (simplify (band wide x @ (uextend _ (value_type narrow)) (iconst _ (u64_from_imm64 mask))))
; Check that `narrow_mask` has a subset of the bits that `mask` does.
(if-let $true (let ((narrow_mask u64 (ty_mask narrow))) (u64_eq narrow_mask (u64_and mask narrow_mask))))
x)
;; Masking out the sign-extended bits of an `sextend` turns it into a `uextend`.
(rule (simplify (band wide (sextend _ x @ (value_type narrow)) (iconst _ (u64_from_imm64 mask))))
(if-let $true (u64_eq mask (ty_mask narrow)))
(uextend wide x))
;; Rematerialize ALU-op-with-imm and iconsts in each block where they're
;; used. This is neutral (add-with-imm) or positive (iconst) for
;; register pressure, and these ops are very cheap.
(rule (simplify x @ (iadd _ (iconst _ _) _))
(remat x))
(rule (simplify x @ (iadd _ _ (iconst _ _)))
(remat x))
(rule (simplify x @ (isub _ (iconst _ _) _))
(remat x))
(rule (simplify x @ (isub _ _ (iconst _ _)))
(remat x))
(rule (simplify x @ (band _ (iconst _ _) _))
(remat x))
(rule (simplify x @ (band _ _ (iconst _ _)))
(remat x))
(rule (simplify x @ (bor _ (iconst _ _) _))
(remat x))
(rule (simplify x @ (bor _ _ (iconst _ _)))
(remat x))
(rule (simplify x @ (bxor _ (iconst _ _) _))
(remat x))
(rule (simplify x @ (bxor _ _ (iconst _ _)))
(remat x))
(rule (simplify x @ (bnot _ _))
(remat x))
(rule (simplify x @ (iconst _ _))
(remat x))
(rule (simplify x @ (f32const _ _))
(remat x))
(rule (simplify x @ (f64const _ _))
(remat x))
;; (x ^ -1) can be replaced with the `bnot` instruction
(rule (simplify (bxor ty x (iconst ty k)))
(if-let -1 (i64_sextend_imm64 ty k))
(bnot ty x))
;; 32-bit integers zero-extended to 64-bit integers are never negative
(rule (simplify
(slt ty
(uextend $I64 x @ (value_type $I32))
(iconst _ (u64_from_imm64 0))))
(iconst ty (imm64 0)))
(rule (simplify
(sge ty
(uextend $I64 x @ (value_type $I32))
(iconst _ (u64_from_imm64 0))))
(iconst ty (imm64 1)))
;; Transform select-of-icmp into {u,s}{min,max} instructions where possible.
(rule (simplify (select ty (sgt _ x y) x y)) (smax ty x y))
(rule (simplify (select ty (sge _ x y) x y)) (smax ty x y))
(rule (simplify (select ty (ugt _ x y) x y)) (umax ty x y))
(rule (simplify (select ty (uge _ x y) x y)) (umax ty x y))
(rule (simplify (select ty (slt _ x y) x y)) (smin ty x y))
(rule (simplify (select ty (sle _ x y) x y)) (smin ty x y))
(rule (simplify (select ty (ult _ x y) x y)) (umin ty x y))
(rule (simplify (select ty (ule _ x y) x y)) (umin ty x y))
;; These are the same rules as above, but when the operands for select are swapped
(rule (simplify (select ty (slt _ x y) y x)) (smax ty x y))
(rule (simplify (select ty (sle _ x y) y x)) (smax ty x y))
(rule (simplify (select ty (ult _ x y) y x)) (umax ty x y))
(rule (simplify (select ty (ule _ x y) y x)) (umax ty x y))
(rule (simplify (select ty (sgt _ x y) y x)) (smin ty x y))
(rule (simplify (select ty (sge _ x y) y x)) (smin ty x y))
(rule (simplify (select ty (ugt _ x y) y x)) (umin ty x y))
(rule (simplify (select ty (uge _ x y) y x)) (umin ty x y))
;; Transform bitselect-of-icmp into {u,s}{min,max} instructions where possible.
(rule (simplify (bitselect ty (sgt _ x y) x y)) (smax ty x y))
(rule (simplify (bitselect ty (sge _ x y) x y)) (smax ty x y))
(rule (simplify (bitselect ty (ugt _ x y) x y)) (umax ty x y))
(rule (simplify (bitselect ty (uge _ x y) x y)) (umax ty x y))
(rule (simplify (bitselect ty (slt _ x y) x y)) (smin ty x y))
(rule (simplify (bitselect ty (sle _ x y) x y)) (smin ty x y))
(rule (simplify (bitselect ty (ult _ x y) x y)) (umin ty x y))
(rule (simplify (bitselect ty (ule _ x y) x y)) (umin ty x y))
;; These are the same rules as above, but when the operands for select are swapped
(rule (simplify (bitselect ty (slt _ x y) y x)) (smax ty x y))
(rule (simplify (bitselect ty (sle _ x y) y x)) (smax ty x y))
(rule (simplify (bitselect ty (ult _ x y) y x)) (umax ty x y))
(rule (simplify (bitselect ty (ule _ x y) y x)) (umax ty x y))
(rule (simplify (bitselect ty (sgt _ x y) y x)) (smin ty x y))
(rule (simplify (bitselect ty (sge _ x y) y x)) (smin ty x y))
(rule (simplify (bitselect ty (ugt _ x y) y x)) (umin ty x y))
(rule (simplify (bitselect ty (uge _ x y) y x)) (umin ty x y))
;; For floats convert fcmp lt into pseudo_min and gt into pseudo_max
;;
;; fmax_pseudo docs state:
;; The behaviour for this operations is defined as fmax_pseudo(a, b) = (a < b) ? b : a, and the behaviour for zero
;; or NaN inputs follows from the behaviour of < with such inputs.
;;
;; That is exactly the operation that we match here!
(rule (simplify
(select ty (fcmp _ (FloatCC.LessThan) x y) x y))
(fmin_pseudo ty x y))
(rule (simplify
(select ty (fcmp _ (FloatCC.GreaterThan) x y) x y))
(fmax_pseudo ty x y))
;; TODO: perform this same optimization to `f{min,max}_pseudo` for vectors
;; with the `bitselect` instruction, but the pattern is a bit more complicated
;; due to most bitselects-over-floats having bitcasts.
;; fneg(fneg(x)) == x.
(rule (simplify (fneg ty (fneg ty x))) (subsume x))
;; If both of the multiplied arguments to an `fma` are negated then remove
;; both of them since they cancel out.
(rule (simplify (fma ty (fneg ty x) (fneg ty y) z))
(fma ty x y z))
;; If both of the multiplied arguments to an `fmul` are negated then remove
;; both of them since they cancel out.
(rule (simplify (fmul ty (fneg ty x) (fneg ty y)))
(fmul ty x y))

View File

@@ -0,0 +1,109 @@
;; rewrites for integer and floating-point arithmetic
;; eg: `iadd`, `isub`, `ineg`, `imul`, `fadd`, `fsub`, `fmul`
;; x+0 == 0+x == x.
(rule (simplify (iadd ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (iadd ty
(iconst ty (u64_from_imm64 0))
x))
(subsume x))
;; x-0 == x.
(rule (simplify (isub ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
;; 0-x == (ineg x).
(rule (simplify (isub ty
(iconst ty (u64_from_imm64 0))
x))
(ineg ty x))
;; ineg(ineg(x)) == x.
(rule (simplify (ineg ty (ineg ty x))) (subsume x))
;; ineg(x) * ineg(y) == x*y.
(rule (simplify (imul ty (ineg ty x) (ineg ty y)))
(subsume (imul ty x y)))
;; iabs(ineg(x)) == iabs(x).
(rule (simplify (iabs ty (ineg ty x)))
(iabs ty x))
;; iabs(iabs(x)) == iabs(x).
(rule (simplify (iabs ty inner @ (iabs ty x)))
(subsume inner))
;; x-x == 0.
(rule (simplify (isub (fits_in_64 (ty_int ty)) x x)) (subsume (iconst ty (imm64 0))))
;; x*1 == 1*x == x.
(rule (simplify (imul ty
x
(iconst ty (u64_from_imm64 1))))
(subsume x))
(rule (simplify (imul ty
(iconst ty (u64_from_imm64 1))
x))
(subsume x))
;; x*0 == 0*x == 0.
(rule (simplify (imul ty
_
zero @ (iconst ty (u64_from_imm64 0))))
(subsume zero))
(rule (simplify (imul ty
zero @ (iconst ty (u64_from_imm64 0))
_))
(subsume zero))
;; x*-1 == -1*x == ineg(x).
(rule (simplify (imul ty x (iconst ty c)))
(if-let -1 (i64_sextend_imm64 ty c))
(ineg ty x))
(rule (simplify (imul ty (iconst ty c) x))
(if-let -1 (i64_sextend_imm64 ty c))
(ineg ty x))
;; x/1 == x.
(rule (simplify (sdiv ty
x
(iconst ty (u64_from_imm64 1))))
(subsume x))
(rule (simplify (udiv ty
x
(iconst ty (u64_from_imm64 1))))
(subsume x))
;; TODO: strength reduction: div to shifts
;; TODO: div/rem by constants -> magic multiplications
;; x*2 == 2*x == x+x.
(rule (simplify (imul ty x (iconst _ (simm32 2))))
(iadd ty x x))
(rule (simplify (imul ty (iconst _ (simm32 2)) x))
(iadd ty x x))
;; x*c == x<<log2(c) when c is a power of two.
;; Note that the type of `iconst` must be the same as the type of `imul`,
;; so these rules can only fire in situations where it's safe to construct an
;; `iconst` of that type.
(rule (simplify (imul ty x (iconst _ (imm64_power_of_two c))))
(ishl ty x (iconst ty (imm64 c))))
(rule (simplify (imul ty (iconst _ (imm64_power_of_two c)) x))
(ishl ty x (iconst ty (imm64 c))))
;; fneg(fneg(x)) == x.
(rule (simplify (fneg ty (fneg ty x))) (subsume x))
;; If both of the multiplied arguments to an `fma` are negated then remove
;; both of them since they cancel out.
(rule (simplify (fma ty (fneg ty x) (fneg ty y) z))
(fma ty x y z))
;; If both of the multiplied arguments to an `fmul` are negated then remove
;; both of them since they cancel out.
(rule (simplify (fmul ty (fneg ty x) (fneg ty y)))
(fmul ty x y))

View File

@@ -0,0 +1,94 @@
;; Rewrites for `band`, `bnot`, `bor`, `bxor`
;; x | 0 == 0 | x == x | x == x.
(rule (simplify (bor ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (bor ty
(iconst ty (u64_from_imm64 0))
x))
(subsume x))
(rule (simplify (bor ty x x))
(subsume x))
;; x ^ 0 == 0 ^ x == x.
(rule (simplify (bxor ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (bxor ty
(iconst ty (u64_from_imm64 0))
x))
(subsume x))
;; x ^ x == 0.
(rule (simplify (bxor (fits_in_64 (ty_int ty)) x x))
(subsume (iconst ty (imm64 0))))
;; x ^ not(x) == not(x) ^ x == x | not(x) == not(x) | x == -1.
;; This identity also holds for non-integer types, vectors, and wider types.
;; But `iconst` is only valid for integers up to 64 bits wide.
(rule (simplify (bxor (fits_in_64 (ty_int ty)) x (bnot ty x))) (subsume (iconst ty (imm64 (ty_mask ty)))))
(rule (simplify (bxor (fits_in_64 (ty_int ty)) (bnot ty x) x)) (subsume (iconst ty (imm64 (ty_mask ty)))))
(rule (simplify (bor (fits_in_64 (ty_int ty)) x (bnot ty x))) (subsume (iconst ty (imm64 (ty_mask ty)))))
(rule (simplify (bor (fits_in_64 (ty_int ty)) (bnot ty x) x)) (subsume (iconst ty (imm64 (ty_mask ty)))))
;; x & -1 == -1 & x == x & x == x.
(rule (simplify (band ty x x)) (subsume x))
(rule (simplify (band ty x (iconst ty k)))
(if-let -1 (i64_sextend_imm64 ty k))
(subsume x))
(rule (simplify (band ty (iconst ty k) x))
(if-let -1 (i64_sextend_imm64 ty k))
(subsume x))
;; x & 0 == 0 & x == x & not(x) == not(x) & x == 0.
(rule (simplify (band ty _ zero @ (iconst ty (u64_from_imm64 0)))) (subsume zero))
(rule (simplify (band ty zero @ (iconst ty (u64_from_imm64 0)) _)) (subsume zero))
(rule (simplify (band (fits_in_64 (ty_int ty)) x (bnot ty x))) (subsume (iconst ty (imm64 0))))
(rule (simplify (band (fits_in_64 (ty_int ty)) (bnot ty x) x)) (subsume (iconst ty (imm64 0))))
;; not(not(x)) == x.
(rule (simplify (bnot ty (bnot ty x))) (subsume x))
;; DeMorgan's rule (two versions):
;; bnot(bor(x, y)) == band(bnot(x), bnot(y))
(rule (simplify (bnot ty (bor ty x y)))
(band ty (bnot ty x) (bnot ty y)))
;; bnot(band(x, y)) == bor(bnot(x), bnot(y))
(rule (simplify (bnot ty (band t x y)))
(bor ty (bnot ty x) (bnot ty y)))
;; `or(and(x, y), not(y)) == or(x, not(y))`
(rule (simplify (bor ty
(band ty x y)
z @ (bnot ty y)))
(bor ty x z))
;; Duplicate the rule but swap the `bor` operands because `bor` is
;; commutative. We could, of course, add a `simplify` rule to do the commutative
;; swap for all `bor`s but this will bloat the e-graph with many e-nodes. It is
;; cheaper to have additional rules, rather than additional e-nodes, because we
;; amortize their cost via ISLE's smart codegen.
(rule (simplify (bor ty
z @ (bnot ty y)
(band ty x y)))
(bor ty x z))
;; `or(and(x, y), not(y)) == or(x, not(y))` specialized for constants, since
;; otherwise we may not know that `z == not(y)` since we don't generally expand
;; constants in the e-graph.
;;
;; (No need to duplicate for commutative `bor` for this constant version because
;; we move constants to the right.)
(rule (simplify (bor ty
(band ty x (iconst ty (u64_from_imm64 y)))
z @ (iconst ty (u64_from_imm64 zk))))
(if-let $true (u64_eq (u64_and (ty_mask ty) zk)
(u64_and (ty_mask ty) (u64_not y))))
(bor ty x z))
;; (x ^ -1) can be replaced with the `bnot` instruction
(rule (simplify (bxor ty x (iconst ty k)))
(if-let -1 (i64_sextend_imm64 ty k))
(bnot ty x))

View File

@@ -0,0 +1,29 @@
;; Chained `uextend` and `sextend`.
(rule (simplify (uextend ty (uextend _intermediate_ty x)))
(uextend ty x))
(rule (simplify (sextend ty (sextend _intermediate_ty x)))
(sextend ty x))
;; Masking out any of the top bits of the result of `uextend` is a no-op. (This
;; is like a cheap version of known-bits analysis.)
(rule (simplify (band wide x @ (uextend _ (value_type narrow)) (iconst _ (u64_from_imm64 mask))))
; Check that `narrow_mask` has a subset of the bits that `mask` does.
(if-let $true (let ((narrow_mask u64 (ty_mask narrow))) (u64_eq narrow_mask (u64_and mask narrow_mask))))
x)
;; Masking out the sign-extended bits of an `sextend` turns it into a `uextend`.
(rule (simplify (band wide (sextend _ x @ (value_type narrow)) (iconst _ (u64_from_imm64 mask))))
(if-let $true (u64_eq mask (ty_mask narrow)))
(uextend wide x))
;; 32-bit integers zero-extended to 64-bit integers are never negative
(rule (simplify
(slt ty
(uextend $I64 x @ (value_type $I32))
(iconst _ (u64_from_imm64 0))))
(iconst ty (imm64 0)))
(rule (simplify
(sge ty
(uextend $I64 x @ (value_type $I32))
(iconst _ (u64_from_imm64 0))))
(iconst ty (imm64 1)))

View File

@@ -0,0 +1,31 @@
;; Rematerialize ALU-op-with-imm and iconsts in each block where they're
;; used. This is neutral (add-with-imm) or positive (iconst) for
;; register pressure, and these ops are very cheap.
(rule (simplify x @ (iadd _ (iconst _ _) _))
(remat x))
(rule (simplify x @ (iadd _ _ (iconst _ _)))
(remat x))
(rule (simplify x @ (isub _ (iconst _ _) _))
(remat x))
(rule (simplify x @ (isub _ _ (iconst _ _)))
(remat x))
(rule (simplify x @ (band _ (iconst _ _) _))
(remat x))
(rule (simplify x @ (band _ _ (iconst _ _)))
(remat x))
(rule (simplify x @ (bor _ (iconst _ _) _))
(remat x))
(rule (simplify x @ (bor _ _ (iconst _ _)))
(remat x))
(rule (simplify x @ (bxor _ (iconst _ _) _))
(remat x))
(rule (simplify x @ (bxor _ _ (iconst _ _)))
(remat x))
(rule (simplify x @ (bnot _ _))
(remat x))
(rule (simplify x @ (iconst _ _))
(remat x))
(rule (simplify x @ (f32const _ _))
(remat x))
(rule (simplify x @ (f64const _ _))
(remat x))

View File

@@ -0,0 +1,59 @@
;; `select`/`bitselect`-related rewrites
;; Transform select-of-icmp into {u,s}{min,max} instructions where possible.
(rule (simplify (select ty (sgt _ x y) x y)) (smax ty x y))
(rule (simplify (select ty (sge _ x y) x y)) (smax ty x y))
(rule (simplify (select ty (ugt _ x y) x y)) (umax ty x y))
(rule (simplify (select ty (uge _ x y) x y)) (umax ty x y))
(rule (simplify (select ty (slt _ x y) x y)) (smin ty x y))
(rule (simplify (select ty (sle _ x y) x y)) (smin ty x y))
(rule (simplify (select ty (ult _ x y) x y)) (umin ty x y))
(rule (simplify (select ty (ule _ x y) x y)) (umin ty x y))
;; These are the same rules as above, but when the operands for select are swapped
(rule (simplify (select ty (slt _ x y) y x)) (smax ty x y))
(rule (simplify (select ty (sle _ x y) y x)) (smax ty x y))
(rule (simplify (select ty (ult _ x y) y x)) (umax ty x y))
(rule (simplify (select ty (ule _ x y) y x)) (umax ty x y))
(rule (simplify (select ty (sgt _ x y) y x)) (smin ty x y))
(rule (simplify (select ty (sge _ x y) y x)) (smin ty x y))
(rule (simplify (select ty (ugt _ x y) y x)) (umin ty x y))
(rule (simplify (select ty (uge _ x y) y x)) (umin ty x y))
;; Transform bitselect-of-icmp into {u,s}{min,max} instructions where possible.
(rule (simplify (bitselect ty (sgt _ x y) x y)) (smax ty x y))
(rule (simplify (bitselect ty (sge _ x y) x y)) (smax ty x y))
(rule (simplify (bitselect ty (ugt _ x y) x y)) (umax ty x y))
(rule (simplify (bitselect ty (uge _ x y) x y)) (umax ty x y))
(rule (simplify (bitselect ty (slt _ x y) x y)) (smin ty x y))
(rule (simplify (bitselect ty (sle _ x y) x y)) (smin ty x y))
(rule (simplify (bitselect ty (ult _ x y) x y)) (umin ty x y))
(rule (simplify (bitselect ty (ule _ x y) x y)) (umin ty x y))
;; These are the same rules as above, but when the operands for select are swapped
(rule (simplify (bitselect ty (slt _ x y) y x)) (smax ty x y))
(rule (simplify (bitselect ty (sle _ x y) y x)) (smax ty x y))
(rule (simplify (bitselect ty (ult _ x y) y x)) (umax ty x y))
(rule (simplify (bitselect ty (ule _ x y) y x)) (umax ty x y))
(rule (simplify (bitselect ty (sgt _ x y) y x)) (smin ty x y))
(rule (simplify (bitselect ty (sge _ x y) y x)) (smin ty x y))
(rule (simplify (bitselect ty (ugt _ x y) y x)) (umin ty x y))
(rule (simplify (bitselect ty (uge _ x y) y x)) (umin ty x y))
;; For floats convert fcmp lt into pseudo_min and gt into pseudo_max
;;
;; fmax_pseudo docs state:
;; The behaviour for this operations is defined as fmax_pseudo(a, b) = (a < b) ? b : a, and the behaviour for zero
;; or NaN inputs follows from the behaviour of < with such inputs.
;;
;; That is exactly the operation that we match here!
(rule (simplify
(select ty (fcmp _ (FloatCC.LessThan) x y) x y))
(fmin_pseudo ty x y))
(rule (simplify
(select ty (fcmp _ (FloatCC.GreaterThan) x y) x y))
(fmax_pseudo ty x y))
;; TODO: perform this same optimization to `f{min,max}_pseudo` for vectors
;; with the `bitselect` instruction, but the pattern is a bit more complicated
;; due to most bitselects-over-floats having bitcasts.

View File

@@ -0,0 +1,80 @@
;; rewrites for shifts and rotates: `ishl, `ushr`, `sshr`, `rotl, `rotr`
;; x>>0 == x<<0 == x rotr 0 == x rotl 0 == x.
(rule (simplify (ishl ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (ushr ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (sshr ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (rotr ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
(rule (simplify (rotl ty
x
(iconst ty (u64_from_imm64 0))))
(subsume x))
;; `(x >> k) << k` is the same as masking off the bottom `k` bits (regardless if
;; this is a signed or unsigned shift right).
(rule (simplify (ishl (fits_in_64 ty)
(ushr ty x (iconst _ k))
(iconst _ k)))
(let ((mask Imm64 (imm64_shl ty (imm64 0xFFFF_FFFF_FFFF_FFFF) k)))
(band ty x (iconst ty mask))))
(rule (simplify (ishl (fits_in_64 ty)
(sshr ty x (iconst _ k))
(iconst _ k)))
(let ((mask Imm64 (imm64_shl ty (imm64 0xFFFF_FFFF_FFFF_FFFF) k)))
(band ty x (iconst ty mask))))
;; For unsigned shifts, `(x << k) >> k` is the same as masking out the top
;; `k` bits. A similar rule is valid for vectors but this `iconst` mask only
;; works for scalar integers.
(rule (simplify (ushr (fits_in_64 (ty_int ty))
(ishl ty x (iconst _ k))
(iconst _ k)))
(band ty x (iconst ty (imm64_ushr ty (imm64 (ty_mask ty)) k))))
;; For signed shifts, `(x << k) >> k` does sign-extension from `n` bits to
;; `n+k` bits. In the special case where `x` is the result of either `sextend`
;; or `uextend` from `n` bits to `n+k` bits, we can implement this using
;; `sextend`.
(rule (simplify (sshr wide
(ishl wide
(uextend wide x @ (value_type narrow))
(iconst _ shift))
(iconst _ shift)))
(if-let (u64_from_imm64 shift_u64) shift)
(if-let $true (u64_eq shift_u64 (u64_sub (ty_bits_u64 wide) (ty_bits_u64 narrow))))
(sextend wide x))
;; If `k` is smaller than the difference in bit widths of the two types, then
;; the intermediate sign bit comes from the extend op, so the final result is
;; the same as the original extend op.
(rule (simplify (sshr wide
(ishl wide
x @ (uextend wide (value_type narrow))
(iconst _ shift))
(iconst _ shift)))
(if-let (u64_from_imm64 shift_u64) shift)
(if-let $true (u64_lt shift_u64 (u64_sub (ty_bits_u64 wide) (ty_bits_u64 narrow))))
x)
;; If the original extend op was `sextend`, then both of the above cases say
;; the result should also be `sextend`.
(rule (simplify (sshr wide
(ishl wide
x @ (sextend wide (value_type narrow))
(iconst _ shift))
(iconst _ shift)))
(if-let (u64_from_imm64 shift_u64) shift)
(if-let $true (u64_le shift_u64 (u64_sub (ty_bits_u64 wide) (ty_bits_u64 narrow))))
x)

View File

@@ -1,497 +0,0 @@
test optimize
set opt_level=speed
target x86_64
function %f0(i32) -> i32 {
block0(v0: i32):
v1 = iconst.i32 2
v2 = imul v0, v1
; check: v5 = ishl v0, v4 ; v4 = 1
; check: return v5
return v2
}
function %f1() -> i64 {
block0:
v0 = iconst.i32 0xffff_ffff_9876_5432
v1 = uextend.i64 v0
return v1
; check: v2 = iconst.i64 0x9876_5432
; check: return v2 ; v2 = 0x9876_5432
}
function %unsigned_shift_right_shift_left_i8(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 5
v2 = ushr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i8 224
; check: v5 = band v0, v4
; check: return v5
}
function %unsigned_shift_right_shift_left_i32(i32) -> i32 {
block0(v0: i32):
v1 = iconst.i32 5
v2 = ushr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i32 0xffff_ffe0
; check: v5 = band v0, v4
; check: return v5
}
function %unsigned_shift_right_shift_left_i64(i64) -> i64 {
block0(v0: i64):
v1 = iconst.i64 5
v2 = ushr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i64 -32
; check: v5 = band v0, v4
; check: return v5
}
function %signed_shift_right_shift_left_i8(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 5
v2 = sshr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i8 224
; check: v5 = band v0, v4
; check: return v5
}
function %signed_shift_right_shift_left_i32(i32) -> i32 {
block0(v0: i32):
v1 = iconst.i32 5
v2 = sshr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i32 0xffff_ffe0
; check: v5 = band v0, v4
; check: return v5
}
function %signed_shift_right_shift_left_i64(i64) -> i64 {
block0(v0: i64):
v1 = iconst.i64 5
v2 = sshr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i64 -32
; check: v5 = band v0, v4
; check: return v5
}
function %signed_shift_right_shift_left_i8_mask_rhs(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 0xf5
v2 = sshr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i8 224
; check: v5 = band v0, v4
; check: return v5
}
function %sextend_shift_32_64_unsigned(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 32
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: v7 = uextend.i64 v0
; check: return v7
}
function %sextend_shift_32_64_signed(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 32
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: return v2
}
function %sextend_undershift_32_64_unsigned(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 31
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: v5 = iconst.i64 0x0001_ffff_ffff
; check: v6 = band v2, v5
; check: return v6
}
function %sextend_undershift_32_64_signed(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 31
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: return v2
}
function %sextend_shift_8_64_unsigned(i8) -> i64 {
block0(v0: i8):
v1 = iconst.i8 56
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: v7 = uextend.i64 v0
; check: return v7
}
function %sextend_shift_8_64_signed(i8) -> i64 {
block0(v0: i8):
v1 = iconst.i8 56
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: return v2
}
function %uextend_shift_32_64_unsigned(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 32
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: return v2
}
function %uextend_shift_32_64_signed(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 32
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: v5 = sextend.i64 v0
; check: return v5
}
function %uextend_undershift_32_64_unsigned(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 31
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: return v2
}
function %uextend_undershift_32_64_signed(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 31
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: return v2
}
function %uextend_shift_8_64_unsigned(i8) -> i64 {
block0(v0: i8):
v1 = iconst.i8 56
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: return v2
}
function %uextend_shift_8_64_signed(i8) -> i64 {
block0(v0: i8):
v1 = iconst.i8 56
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: v5 = sextend.i64 v0
; check: return v5
}
function %double_ineg(i32) -> i32 {
block0(v0: i32):
v1 = ineg v0
v2 = ineg v1
return v2
; check: return v0
}
function %imul_ineg_cancel(i32, i32) -> i32 {
block0(v0: i32, v1: i32):
v2 = ineg v0
v3 = ineg v1
v4 = imul v2, v3
return v4
; check: v5 = imul v0, v1
; check: return v5
}
function %iabs_ineg(i32) -> i32 {
block0(v0: i32):
v1 = ineg v0
v2 = iabs v1
return v2
; check: v3 = iabs v0
; check: return v3
}
function %iabs_iabs(i32) -> i32 {
block0(v0: i32):
v1 = iabs v0
v2 = iabs v1
return v2
; check: return v1
}
function %isub_self(i32) -> i32 {
block0(v0: i32):
v1 = isub v0, v0
return v1
; check: v2 = iconst.i32 0
; check: return v2
}
function %mul_minus_one(i32) -> i32 {
block0(v0: i32):
v1 = iconst.i32 0xffff_ffff ; -1
v2 = imul v0, v1
return v2
; check: v3 = ineg v0
; check: v4 -> v3
; check: return v3
}
function %mul_minus_one_commuted(i32) -> i32 {
block0(v0: i32):
v1 = iconst.i32 0xffff_ffff ; -1
v2 = imul v1, v0
return v2
; check: v3 = ineg v0
; check: v5 -> v3
; check: v6 -> v3
; check: return v3
}
function %or_and_y_with_not_y_i8(i8, i8) -> i8 {
block0(v0: i8, v1: i8):
v2 = band v0, v1
v3 = bnot v1
v4 = bor v2, v3
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_constant_with_not_constant_i8(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 -4
v2 = band v0, v1
v3 = iconst.i8 3
v4 = bor v2, v3
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_y_with_not_y_i8(i8, i8) -> i8 {
block0(v0: i8, v1: i8):
v2 = band v0, v1
v3 = bnot v1
v4 = bor v3, v2
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_constant_with_not_constant_i8(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 -4
v2 = band v0, v1
v3 = iconst.i8 3
v4 = bor v3, v2
return v4
; check: v6 = bor v0, v3
; check: return v6
}
function %or_and_constant_with_any_constant_should_not_apply_rule_i8(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 -4
v2 = band v0, v1
;; `v3` is not `bnot(v1)` so the rewrite should not apply.
v3 = iconst.i8 -5
v4 = bor v2, v3
return v4
; check: return v4
}
function %or_and_y_with_not_y_i64(i64, i64) -> i64 {
block0(v0: i64, v1: i64):
v2 = band v0, v1
v3 = bnot v1
v4 = bor v2, v3
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_constant_with_not_constant_i64(i64) -> i64 {
block0(v0: i64):
v1 = iconst.i64 -4
v2 = band v0, v1
v3 = iconst.i64 3
v4 = bor v2, v3
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_y_with_not_y_i64(i64, i64) -> i64 {
block0(v0: i64, v1: i64):
v2 = band v0, v1
v3 = bnot v1
v4 = bor v3, v2
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_constant_with_not_constant_i64(i64) -> i64 {
block0(v0: i64):
v1 = iconst.i64 -4
v2 = band v0, v1
v3 = iconst.i64 3
v4 = bor v3, v2
return v4
; check: v6 = bor v0, v3
; check: return v6
}
function %or_and_constant_with_any_constant_should_not_apply_rule_i64(i64) -> i64 {
block0(v0: i64):
v1 = iconst.i64 -4
v2 = band v0, v1
;; `v3` is not `bnot(v1)` so the rewrite should not apply.
v3 = iconst.i64 -5
v4 = bor v2, v3
return v4
; check: return v4
}
function %bnot1(i8) -> i8 {
block0(v1: i8):
v2 = iconst.i8 -1
v3 = bxor v1, v2
return v3
}
; check: v4 = bnot v1
; check: return v4
function %bnot2(i64) -> i64 {
block0(v1: i64):
v2 = iconst.i64 -1
v3 = bxor v1, v2
return v3
}
; check: v4 = bnot v1
; check: return v4
function %bnot3(i64) -> i64 {
block0(v1: i64):
v2 = iconst.i64 -1
v3 = bxor v2, v1
return v3
}
; check: v5 = bnot v1
; check: return v5
function %extend_always_above_zero(i32) -> i8 {
block0(v1: i32):
v2 = uextend.i64 v1
v3 = iconst.i64 0
v4 = icmp slt v2, v3
return v4
}
; check: v5 = iconst.i8 0
; check: return v5
function %extend_always_above_zero2(i32) -> i8 {
block0(v1: i32):
v2 = uextend.i64 v1
v3 = iconst.i64 0
v4 = icmp sge v2, v3
return v4
}
; check: v5 = iconst.i8 1
; check: return v5
function %double_uextend(i16) -> i64 {
block0(v1: i16):
v2 = uextend.i32 v1
v3 = uextend.i64 v2
return v3
}
; check: v4 = uextend.i64 v1
; check: return v4
function %double_sextend(i16) -> i64 {
block0(v1: i16):
v2 = sextend.i32 v1
v3 = sextend.i64 v2
return v3
}
; check: v4 = sextend.i64 v1
; check: return v4
function %double_fneg(f32) -> f32 {
block0(v1: f32):
v2 = fneg v1
v3 = fneg v2
return v3
}
; check: return v1
function %fma_double_fneg(f32, f32, f32) -> f32 {
block0(v1: f32, v2: f32, v3: f32):
v4 = fneg v1
v5 = fneg v2
v6 = fma v4, v5, v3
return v6
}
; check: v7 = fma v1, v2, v3
; check: return v7
function %fmul_double_fneg(f32, f32) -> f32 {
block0(v1: f32, v2: f32):
v3 = fneg v1
v4 = fneg v2
v5 = fmul v3, v4
return v5
}
; check: v6 = fmul v1, v2
; check: return v6

View File

@@ -0,0 +1,105 @@
test optimize
set opt_level=speed
target x86_64
function %f0(i32) -> i32 {
block0(v0: i32):
v1 = iconst.i32 2
v2 = imul v0, v1
; check: v5 = ishl v0, v4 ; v4 = 1
; check: return v5
return v2
}
function %double_ineg(i32) -> i32 {
block0(v0: i32):
v1 = ineg v0
v2 = ineg v1
return v2
; check: return v0
}
function %imul_ineg_cancel(i32, i32) -> i32 {
block0(v0: i32, v1: i32):
v2 = ineg v0
v3 = ineg v1
v4 = imul v2, v3
return v4
; check: v5 = imul v0, v1
; check: return v5
}
function %iabs_ineg(i32) -> i32 {
block0(v0: i32):
v1 = ineg v0
v2 = iabs v1
return v2
; check: v3 = iabs v0
; check: return v3
}
function %iabs_iabs(i32) -> i32 {
block0(v0: i32):
v1 = iabs v0
v2 = iabs v1
return v2
; check: return v1
}
function %isub_self(i32) -> i32 {
block0(v0: i32):
v1 = isub v0, v0
return v1
; check: v2 = iconst.i32 0
; check: return v2
}
function %mul_minus_one(i32) -> i32 {
block0(v0: i32):
v1 = iconst.i32 0xffff_ffff ; -1
v2 = imul v0, v1
return v2
; check: v3 = ineg v0
; check: v4 -> v3
; check: return v3
}
function %mul_minus_one_commuted(i32) -> i32 {
block0(v0: i32):
v1 = iconst.i32 0xffff_ffff ; -1
v2 = imul v1, v0
return v2
; check: v3 = ineg v0
; check: return v3
}
function %double_fneg(f32) -> f32 {
block0(v1: f32):
v2 = fneg v1
v3 = fneg v2
return v3
}
; check: return v1
function %fma_double_fneg(f32, f32, f32) -> f32 {
block0(v1: f32, v2: f32, v3: f32):
v4 = fneg v1
v5 = fneg v2
v6 = fma v4, v5, v3
return v6
}
; check: v7 = fma v1, v2, v3
; check: return v7
function %fmul_double_fneg(f32, f32) -> f32 {
block0(v1: f32, v2: f32):
v3 = fneg v1
v4 = fneg v2
v5 = fmul v3, v4
return v5
}
; check: v6 = fmul v1, v2
; check: return v6

View File

@@ -0,0 +1,139 @@
test optimize
set opt_level=speed
target x86_64
function %or_and_y_with_not_y_i8(i8, i8) -> i8 {
block0(v0: i8, v1: i8):
v2 = band v0, v1
v3 = bnot v1
v4 = bor v2, v3
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_constant_with_not_constant_i8(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 -4
v2 = band v0, v1
v3 = iconst.i8 3
v4 = bor v2, v3
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_y_with_not_y_i8(i8, i8) -> i8 {
block0(v0: i8, v1: i8):
v2 = band v0, v1
v3 = bnot v1
v4 = bor v3, v2
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_constant_with_not_constant_i8(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 -4
v2 = band v0, v1
v3 = iconst.i8 3
v4 = bor v3, v2
return v4
; check: v6 = bor v0, v3
; check: return v6
}
function %or_and_constant_with_any_constant_should_not_apply_rule_i8(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 -4
v2 = band v0, v1
;; `v3` is not `bnot(v1)` so the rewrite should not apply.
v3 = iconst.i8 -5
v4 = bor v2, v3
return v4
; check: return v4
}
function %or_and_y_with_not_y_i64(i64, i64) -> i64 {
block0(v0: i64, v1: i64):
v2 = band v0, v1
v3 = bnot v1
v4 = bor v2, v3
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_constant_with_not_constant_i64(i64) -> i64 {
block0(v0: i64):
v1 = iconst.i64 -4
v2 = band v0, v1
v3 = iconst.i64 3
v4 = bor v2, v3
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_y_with_not_y_i64(i64, i64) -> i64 {
block0(v0: i64, v1: i64):
v2 = band v0, v1
v3 = bnot v1
v4 = bor v3, v2
return v4
; check: v5 = bor v0, v3
; check: return v5
}
function %or_and_constant_with_not_constant_i64(i64) -> i64 {
block0(v0: i64):
v1 = iconst.i64 -4
v2 = band v0, v1
v3 = iconst.i64 3
v4 = bor v3, v2
return v4
; check: v6 = bor v0, v3
; check: return v6
}
function %or_and_constant_with_any_constant_should_not_apply_rule_i64(i64) -> i64 {
block0(v0: i64):
v1 = iconst.i64 -4
v2 = band v0, v1
;; `v3` is not `bnot(v1)` so the rewrite should not apply.
v3 = iconst.i64 -5
v4 = bor v2, v3
return v4
; check: return v4
}
function %bnot1(i8) -> i8 {
block0(v1: i8):
v2 = iconst.i8 -1
v3 = bxor v1, v2
return v3
}
; check: v4 = bnot v1
; check: return v4
function %bnot2(i64) -> i64 {
block0(v1: i64):
v2 = iconst.i64 -1
v3 = bxor v1, v2
return v3
}
; check: v4 = bnot v1
; check: return v4
function %bnot3(i64) -> i64 {
block0(v1: i64):
v2 = iconst.i64 -1
v3 = bxor v2, v1
return v3
}
; check: v5 = bnot v1
; check: return v5

View File

@@ -0,0 +1,55 @@
test optimize
set opt_level=speed
target x86_64
function %f1() -> i64 {
block0:
v0 = iconst.i32 0xffff_ffff_9876_5432
v1 = uextend.i64 v0
return v1
; check: v2 = iconst.i64 0x9876_5432
; check: return v2 ; v2 = 0x9876_5432
}
function %extend_always_above_zero(i32) -> i8 {
block0(v1: i32):
v2 = uextend.i64 v1
v3 = iconst.i64 0
v4 = icmp slt v2, v3
return v4
}
; check: v5 = iconst.i8 0
; check: return v5
function %extend_always_above_zero2(i32) -> i8 {
block0(v1: i32):
v2 = uextend.i64 v1
v3 = iconst.i64 0
v4 = icmp sge v2, v3
return v4
}
; check: v5 = iconst.i8 1
; check: return v5
function %double_uextend(i16) -> i64 {
block0(v1: i16):
v2 = uextend.i32 v1
v3 = uextend.i64 v2
return v3
}
; check: v4 = uextend.i64 v1
; check: return v4
function %double_sextend(i16) -> i64 {
block0(v1: i16):
v2 = sextend.i32 v1
v3 = sextend.i64 v2
return v3
}
; check: v4 = sextend.i64 v1
; check: return v4

View File

@@ -0,0 +1,206 @@
test optimize
set opt_level=speed
target x86_64
function %unsigned_shift_right_shift_left_i8(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 5
v2 = ushr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i8 224
; check: v5 = band v0, v4
; check: return v5
}
function %unsigned_shift_right_shift_left_i32(i32) -> i32 {
block0(v0: i32):
v1 = iconst.i32 5
v2 = ushr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i32 0xffff_ffe0
; check: v5 = band v0, v4
; check: return v5
}
function %unsigned_shift_right_shift_left_i64(i64) -> i64 {
block0(v0: i64):
v1 = iconst.i64 5
v2 = ushr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i64 -32
; check: v5 = band v0, v4
; check: return v5
}
function %signed_shift_right_shift_left_i8(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 5
v2 = sshr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i8 224
; check: v5 = band v0, v4
; check: return v5
}
function %signed_shift_right_shift_left_i32(i32) -> i32 {
block0(v0: i32):
v1 = iconst.i32 5
v2 = sshr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i32 0xffff_ffe0
; check: v5 = band v0, v4
; check: return v5
}
function %signed_shift_right_shift_left_i64(i64) -> i64 {
block0(v0: i64):
v1 = iconst.i64 5
v2 = sshr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i64 -32
; check: v5 = band v0, v4
; check: return v5
}
function %signed_shift_right_shift_left_i8_mask_rhs(i8) -> i8 {
block0(v0: i8):
v1 = iconst.i8 0xf5
v2 = sshr v0, v1
v3 = ishl v2, v1
return v3
; check: v4 = iconst.i8 224
; check: v5 = band v0, v4
; check: return v5
}
function %sextend_shift_32_64_unsigned(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 32
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: v7 = uextend.i64 v0
; check: return v7
}
function %sextend_shift_32_64_signed(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 32
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: return v2
}
function %sextend_undershift_32_64_unsigned(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 31
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: v5 = iconst.i64 0x0001_ffff_ffff
; check: v6 = band v2, v5
; check: return v6
}
function %sextend_undershift_32_64_signed(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 31
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: return v2
}
function %sextend_shift_8_64_unsigned(i8) -> i64 {
block0(v0: i8):
v1 = iconst.i8 56
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: v7 = uextend.i64 v0
; check: return v7
}
function %sextend_shift_8_64_signed(i8) -> i64 {
block0(v0: i8):
v1 = iconst.i8 56
v2 = sextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: return v2
}
function %uextend_shift_32_64_unsigned(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 32
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: return v2
}
function %uextend_shift_32_64_signed(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 32
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: v5 = sextend.i64 v0
; check: return v5
}
function %uextend_undershift_32_64_unsigned(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 31
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: return v2
}
function %uextend_undershift_32_64_signed(i32) -> i64 {
block0(v0: i32):
v1 = iconst.i8 31
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: return v2
}
function %uextend_shift_8_64_unsigned(i8) -> i64 {
block0(v0: i8):
v1 = iconst.i8 56
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = ushr v3, v1
return v4
; check: return v2
}
function %uextend_shift_8_64_signed(i8) -> i64 {
block0(v0: i8):
v1 = iconst.i8 56
v2 = uextend.i64 v0
v3 = ishl v2, v1
v4 = sshr v3, v1
return v4
; check: v5 = sextend.i64 v0
; check: return v5
}