Type checking and Dominator Tree integrity checks in Verifier (#66)

* Verify that a recomputed dominator tree is identical to the existing one.
* The verifier now typechecks instruction results and arguments.
* The verifier now typechecks instruction results and arguments.
* The verifier now typechecks instruction results and arguments.
* Added `inst_{fixed,variable}_args` accessor functions.
* Improved error messages in verifier.
* Type check return statements against the function signature.
This commit is contained in:
Angus Holder
2017-03-29 21:14:42 +01:00
committed by Jakob Stoklund Olesen
parent 1d6049b8f8
commit b5fda64b49
5 changed files with 269 additions and 15 deletions

View File

@@ -210,10 +210,6 @@ def gen_instruction_data_impl(fmt):
fmt.doc_comment(
"""
Get the value arguments to this instruction.
This is returned as two `Value` slices. The first one
represents the fixed arguments, the second any variable
arguments.
""")
gen_arguments_method(fmt, False)
fmt.doc_comment(

View File

@@ -344,16 +344,40 @@ impl DataFlowGraph {
DisplayInst(self, inst)
}
/// Get the value arguments on `inst` as a slice.
/// Get all value arguments on `inst` as a slice.
pub fn inst_args(&self, inst: Inst) -> &[Value] {
self.insts[inst].arguments(&self.value_lists)
}
/// Get the value arguments on `inst` as a mutable slice.
/// Get all value arguments on `inst` as a mutable slice.
pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
self.insts[inst].arguments_mut(&mut self.value_lists)
}
/// Get the fixed value arguments on `inst` as a slice.
pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
let fixed_args = self[inst].opcode().constraints().fixed_value_arguments();
&self.inst_args(inst)[..fixed_args]
}
/// Get the fixed value arguments on `inst` as a mutable slice.
pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let fixed_args = self[inst].opcode().constraints().fixed_value_arguments();
&mut self.inst_args_mut(inst)[..fixed_args]
}
/// Get the variable value arguments on `inst` as a slice.
pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
let fixed_args = self[inst].opcode().constraints().fixed_value_arguments();
&self.inst_args(inst)[fixed_args..]
}
/// Get the variable value arguments on `inst` as a mutable slice.
pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let fixed_args = self[inst].opcode().constraints().fixed_value_arguments();
&mut self.inst_args_mut(inst)[fixed_args..]
}
/// Create result values for an instruction that produces multiple results.
///
/// Instructions that produce 0 or 1 result values only need to be created with `make_inst`. If

View File

@@ -398,7 +398,6 @@ pub struct OpcodeConstraints {
/// Offset into `OPERAND_CONSTRAINT` table of the descriptors for this opcode. The first
/// `fixed_results()` entries describe the result constraints, then follows constraints for the
/// fixed `Value` input operands. (`fixed_value_arguments()` of them).
/// format.
constraint_offset: u16,
}

View File

@@ -346,12 +346,8 @@ fn check_call_signature(dfg: &DataFlowGraph, inst: Inst) -> Result<(), SigRef> {
/// Check if the arguments of the return `inst` match the signature.
fn check_return_signature(dfg: &DataFlowGraph, inst: Inst, sig: &Signature) -> bool {
let fixed_values = dfg[inst].opcode().constraints().fixed_value_arguments();
check_arg_types(dfg,
dfg.inst_args(inst)
.iter()
.skip(fixed_values)
.cloned(),
dfg.inst_variable_args(inst).iter().cloned(),
&sig.return_types)
}

View File

@@ -26,7 +26,6 @@
//!
//! - All predecessors in the CFG must be branches to the EBB.
//! - All branches to an EBB must be present in the CFG.
//! TODO:
//! - A recomputed dominator tree is identical to the existing one.
//!
//! Type checking
@@ -42,6 +41,7 @@
//! - All return instructions must have return value operands matching the current
//! function signature.
//!
//! TODO:
//! Ad hoc checking
//!
//! - Stack slot loads and stores must be in-bounds.
@@ -56,8 +56,9 @@
use dominator_tree::DominatorTree;
use flowgraph::ControlFlowGraph;
use ir::entities::AnyEntity;
use ir::instructions::{InstructionFormat, BranchInfo};
use ir::{types, Function, ValueDef, Ebb, Inst, SigRef, FuncRef, ValueList, JumpTable, Value};
use ir::instructions::{InstructionFormat, BranchInfo, ResolvedConstraint, CallInfo};
use ir::{types, Function, ValueDef, Ebb, Inst, SigRef, FuncRef, ValueList, JumpTable, Value, Type};
use Context;
use std::fmt::{self, Display, Formatter};
use std::result;
@@ -101,6 +102,13 @@ pub fn verify_function(func: &Function) -> Result<()> {
Verifier::new(func).run()
}
/// Verify `ctx`.
pub fn verify_context(ctx: &Context) -> Result<()> {
let verifier = Verifier::new(&ctx.func);
verifier.domtree_integrity(&ctx.domtree)?;
verifier.run()
}
struct Verifier<'a> {
func: &'a Function,
cfg: ControlFlowGraph,
@@ -377,11 +385,242 @@ impl<'a> Verifier<'a> {
Ok(())
}
fn domtree_integrity(&self, domtree: &DominatorTree) -> Result<()> {
// We consider two `DominatorTree`s to be equal if they return the same immediate
// dominator for each EBB. Therefore the current domtree is valid if it matches the freshly
// computed one.
for ebb in self.func.layout.ebbs() {
let expected = domtree.idom(ebb);
let got = self.domtree.idom(ebb);
if got != expected {
return err!(ebb,
"invalid domtree, expected idom({}) = {:?}, got {:?}",
ebb,
expected,
got);
}
}
Ok(())
}
fn typecheck_entry_block_arguments(&self) -> Result<()> {
if let Some(ebb) = self.func.layout.entry_block() {
let expected_types = &self.func.signature.argument_types;
let ebb_arg_count = self.func.dfg.num_ebb_args(ebb);
if ebb_arg_count != expected_types.len() {
return err!(ebb, "entry block arguments must match function signature");
}
for (i, arg) in self.func
.dfg
.ebb_args(ebb)
.enumerate() {
let arg_type = self.func.dfg.value_type(arg);
if arg_type != expected_types[i].value_type {
return err!(ebb,
"entry block argument {} expected to have type {}, got {}",
i,
expected_types[i],
arg_type);
}
}
}
Ok(())
}
fn typecheck(&self, inst: Inst) -> Result<()> {
let inst_data = &self.func.dfg[inst];
let constraints = inst_data.opcode().constraints();
let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
// For polymorphic opcodes, determine the controlling type variable first.
let ctrl_type = inst_data.ctrl_typevar(&self.func.dfg);
if !value_typeset.contains(ctrl_type) {
return err!(inst, "has an invalid controlling type {}", ctrl_type);
}
ctrl_type
} else {
// Non-polymorphic instructions don't check the controlling type variable, so `Option`
// is unnecessary and we can just make it `VOID`.
types::VOID
};
self.typecheck_results(inst, ctrl_type)?;
self.typecheck_fixed_args(inst, ctrl_type)?;
self.typecheck_variable_args(inst)?;
self.typecheck_return(inst)?;
Ok(())
}
fn typecheck_results(&self, inst: Inst, ctrl_type: Type) -> Result<()> {
let mut i = 0;
for result in self.func.dfg.inst_results(inst) {
let result_type = self.func.dfg.value_type(result);
let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
if let Some(expected_type) = expected_type {
if result_type != expected_type {
return err!(inst,
"expected result {} ({}) to have type {}, found {}",
i,
result,
expected_type,
result_type);
}
} else {
return err!(inst, "has more result values than expected");
}
i += 1;
}
// There aren't any more result types left.
if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
return err!(inst, "has fewer result values than expected");
}
Ok(())
}
fn typecheck_fixed_args(&self, inst: Inst, ctrl_type: Type) -> Result<()> {
let constraints = self.func.dfg[inst].opcode().constraints();
for (i, &arg) in self.func
.dfg
.inst_fixed_args(inst)
.iter()
.enumerate() {
let arg_type = self.func.dfg.value_type(arg);
match constraints.value_argument_constraint(i, ctrl_type) {
ResolvedConstraint::Bound(expected_type) => {
if arg_type != expected_type {
return err!(inst,
"arg {} ({}) has type {}, expected {}",
i,
arg,
arg_type,
expected_type);
}
}
ResolvedConstraint::Free(type_set) => {
if !type_set.contains(arg_type) {
return err!(inst,
"arg {} ({}) with type {} failed to satisfy type set {:?}",
i,
arg,
arg_type,
type_set);
}
}
}
}
Ok(())
}
fn typecheck_variable_args(&self, inst: Inst) -> Result<()> {
match self.func.dfg[inst].analyze_branch(&self.func.dfg.value_lists) {
BranchInfo::SingleDest(ebb, _) => {
let iter = self.func
.dfg
.ebb_args(ebb)
.map(|v| self.func.dfg.value_type(v));
self.typecheck_variable_args_iterator(inst, iter)?;
}
BranchInfo::Table(table) => {
for (_, ebb) in self.func.jump_tables[table].entries() {
let arg_count = self.func.dfg.num_ebb_args(ebb);
if arg_count != 0 {
return err!(inst,
"takes no arguments, but had target {} with {} arguments",
ebb,
arg_count);
}
}
}
BranchInfo::NotABranch => {}
}
match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
CallInfo::Direct(func_ref, _) => {
let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
let arg_types =
self.func.dfg.signatures[sig_ref].argument_types.iter().map(|a| a.value_type);
self.typecheck_variable_args_iterator(inst, arg_types)?;
}
CallInfo::Indirect(sig_ref, _) => {
let arg_types =
self.func.dfg.signatures[sig_ref].argument_types.iter().map(|a| a.value_type);
self.typecheck_variable_args_iterator(inst, arg_types)?;
}
CallInfo::NotACall => {}
}
Ok(())
}
fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(&self,
inst: Inst,
iter: I)
-> Result<()> {
let variable_args = self.func.dfg.inst_variable_args(inst);
let mut i = 0;
for expected_type in iter {
if i >= variable_args.len() {
// Result count mismatch handled below, we want the full argument count first though
i += 1;
continue;
}
let arg = variable_args[i];
let arg_type = self.func.dfg.value_type(arg);
if expected_type != arg_type {
return err!(inst,
"arg {} ({}) has type {}, expected {}",
i,
variable_args[i],
arg_type,
expected_type);
}
i += 1;
}
if i != variable_args.len() {
return err!(inst,
"mismatched argument count, got {}, expected {}",
variable_args.len(),
i);
}
Ok(())
}
fn typecheck_return(&self, inst: Inst) -> Result<()> {
if self.func.dfg[inst].opcode().is_return() {
let args = self.func.dfg.inst_variable_args(inst);
let expected_types = &self.func.signature.return_types;
if args.len() != expected_types.len() {
return err!(inst, "arguments of return must match function signature");
}
for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
let arg_type = self.func.dfg.value_type(arg);
if arg_type != expected_type.value_type {
return err!(inst,
"arg {} ({}) has type {}, must match function signature of {}",
i,
arg,
arg_type,
expected_type);
}
}
}
Ok(())
}
pub fn run(&self) -> Result<()> {
self.typecheck_entry_block_arguments()?;
for ebb in self.func.layout.ebbs() {
for inst in self.func.layout.ebb_insts(ebb) {
self.ebb_integrity(ebb, inst)?;
self.instruction_integrity(inst)?;
self.typecheck(inst)?;
}
self.cfg_integrity(ebb)?;
}