x64: improve tests for heap_addr (#4841)

* x64: improve tests for `heap_addr`

This change adds Cranelift `compile` tests for the various cases for
`heap_addr`. The idea behind this is to more clearly show what the
penalties are for dynamically- vs statically-allocated memory as well as
turning Spectre mitigations on and off.

* Add test case: "right" size memory with Spectre enabled
This commit is contained in:
Andrew Brown
2022-09-01 13:59:55 -07:00
committed by GitHub
parent bca4dae8b0
commit ac2d4c4818
2 changed files with 156 additions and 1 deletions

View File

@@ -0,0 +1,85 @@
test compile precise-output
set enable_heap_access_spectre_mitigation=false
target x86_64
;; Calculate a heap address on a dynamically-allocated memory with Spectre
;; mitigations disabled. This is a 7-instruction sequence with loads, ignoring
;; intermediate `mov`s.
function %f(i32, i64 vmctx) -> i64 {
gv0 = vmctx
gv1 = load.i64 notrap aligned gv0+0
gv2 = load.i64 notrap aligned gv0+8
heap0 = dynamic gv1, bound gv2, offset_guard 0x1000, index_type i32
block0(v0: i32, v1: i64):
v2 = heap_addr.i64 heap0, v0, 0x8000
return v2
}
; pushq %rbp
; movq %rsp, %rbp
; block0:
; movl %edi, %eax
; movq 8(%rsi), %r11
; movq %rax, %rdi
; addq %rdi, $32768, %rdi
; jnb ; ud2 heap_oob ;
; cmpq %r11, %rdi
; jbe label1; j label2
; block1:
; addq %rax, 0(%rsi), %rax
; movq %rbp, %rsp
; popq %rbp
; ret
; block2:
; ud2 heap_oob
;; For a static memory with no Spectre mitigations, we observe a smaller amount
;; of bounds checking: the offset check (`cmp + jbe + j`) and the offset
;; calculation (`add`)--4 instructions.
function %f(i64 vmctx, i32) -> i64 system_v {
gv0 = vmctx
gv1 = load.i64 notrap aligned gv0+0
heap0 = static gv1, bound 0x1000, offset_guard 0x1000, index_type i32
block0(v0: i64, v1: i32):
v10 = heap_addr.i64 heap0, v1, 0
return v10
}
; pushq %rbp
; movq %rsp, %rbp
; block0:
; movl %esi, %eax
; cmpq $4096, %rax
; jbe label1; j label2
; block1:
; addq %rax, 0(%rdi), %rax
; movq %rbp, %rsp
; popq %rbp
; ret
; block2:
; ud2 heap_oob
;; For a static memory with no Spectre mitigations and the "right" size (4GB
;; memory, 2GB guard regions), Cranelift emits no bounds checking, simply
;; `add`--a single instruction.
function %f(i64 vmctx, i32) -> i64 system_v {
gv0 = vmctx
gv1 = load.i64 notrap aligned gv0+0
heap0 = static gv1, bound 0x1_0000_0000, offset_guard 0x8000_0000, index_type i32
block0(v0: i64, v1: i32):
v10 = heap_addr.i64 heap0, v1, 0
return v10
}
; pushq %rbp
; movq %rsp, %rbp
; block0:
; movl %esi, %eax
; addq %rax, 0(%rdi), %rax
; movq %rbp, %rsp
; popq %rbp
; ret

View File

@@ -1,6 +1,23 @@
test compile precise-output
target x86_64
;; Calculate a heap address on a dynamically-allocated memory. Because the
;; Spectre mitigations are on by default (i.e.,
;; `set enable_heap_access_spectre_mitigation=true`), this code not only does
;; the dynamic bounds check (`add + jnb + cmp + jbe + j`) but also re-compares
;; the address to the upper bound (`add + xor + cmp + cmov`)--Cranelift's
;; Spectre mitigation. With loads and ignoring intermediate `mov`s, this amounts
;; to a 10-instruction sequence.
;;
;; And it uses quite a few registers; see this breakdown of what each register
;; generally contains:
;; - %rax holds the passed-in heap offset (argument #1) and ends up holding the
;; final address
;; - %rcx also holds the passed-in heap offset; checked for overflow when added
;; to the `0x8000` immediate
;; - %rsi holds the VM context pointer (argument #2)
;; - %rdi holds the heap limit (computed from argument #2)
;; - %rdx holds the null pointer
function %f(i32, i64 vmctx) -> i64 {
gv0 = vmctx
gv1 = load.i64 notrap aligned gv0+0
@@ -8,7 +25,6 @@ function %f(i32, i64 vmctx) -> i64 {
heap0 = dynamic gv1, bound gv2, offset_guard 0x1000, index_type i32
block0(v0: i32, v1: i64):
v2 = heap_addr.i64 heap0, v0, 0x8000
return v2
}
@@ -34,3 +50,57 @@ block0(v0: i32, v1: i64):
; block2:
; ud2 heap_oob
;; The heap address calculation for this statically-allocated memory checks that
;; the passed offset (%r11) is within bounds (`cmp + jbe + j`) and then includes
;; the same Spectre mitigation as above. This results in a 7-instruction
;; sequence (ignoring `mov`s).
function %f(i64 vmctx, i32) -> i64 system_v {
gv0 = vmctx
gv1 = load.i64 notrap aligned gv0+0
heap0 = static gv1, bound 0x1000, offset_guard 0x1000, index_type i32
block0(v0: i64, v1: i32):
v10 = heap_addr.i64 heap0, v1, 0
return v10
}
; pushq %rbp
; movq %rsp, %rbp
; block0:
; movl %esi, %r11d
; cmpq $4096, %r11
; jbe label1; j label2
; block1:
; movq %r11, %rax
; addq %rax, 0(%rdi), %rax
; xorq %rsi, %rsi, %rsi
; cmpq $4096, %r11
; cmovnbeq %rsi, %rax, %rax
; movq %rbp, %rsp
; popq %rbp
; ret
; block2:
; ud2 heap_oob
;; When a static memory is the "right" size (4GB memory, 2GB guard regions), the
;; Spectre mitigation is not present. Cranelift relies on the memory permissions
;; and emits no bounds checking, simply `add`--a single instruction.
function %f(i64 vmctx, i32) -> i64 system_v {
gv0 = vmctx
gv1 = load.i64 notrap aligned gv0+0
heap0 = static gv1, bound 0x1_0000_0000, offset_guard 0x8000_0000, index_type i32
block0(v0: i64, v1: i32):
v10 = heap_addr.i64 heap0, v1, 0
return v10
}
; pushq %rbp
; movq %rsp, %rbp
; block0:
; movl %esi, %eax
; addq %rax, 0(%rdi), %rax
; movq %rbp, %rsp
; popq %rbp
; ret