Start adding Intel 64-bit encodings.

Add a TailRecipe.rex() method which creates an encoding recipe with a
REX prefix.

Define I64 encodings with REX.W for i64 operations and with/without REX
for i32 ops. Only test the with-REX encodings for now. We don't yet have
an instruction shrinking pass that can select the non-REX encodings.
This commit is contained in:
Jakob Stoklund Olesen
2017-07-10 16:16:22 -07:00
parent fb227cb389
commit a4a8c83aab
4 changed files with 365 additions and 18 deletions

View File

@@ -2,30 +2,65 @@
Intel Encodings.
"""
from __future__ import absolute_import
from cdsl.predicates import IsUnsignedInt
from base import instructions as base
from .defs import I32
from base.formats import UnaryImm
from .defs import I32, I64
from . import recipes as r
I32.enc(base.iadd.i32, *r.rr(0x01))
I32.enc(base.isub.i32, *r.rr(0x29))
for inst, opc in [
(base.iadd, 0x01),
(base.isub, 0x29),
(base.band, 0x21),
(base.bor, 0x09),
(base.bxor, 0x31)]:
I32.enc(inst.i32, *r.rr(opc))
I32.enc(base.band.i32, *r.rr(0x21))
I32.enc(base.bor.i32, *r.rr(0x09))
I32.enc(base.bxor.i32, *r.rr(0x31))
I64.enc(inst.i64, *r.rr.rex(opc, w=1))
I64.enc(inst.i32, *r.rr.rex(opc))
# REX-less encoding must come after REX encoding so we don't use it by
# default. Otherwise reg-alloc would never use r8 and up.
I64.enc(inst.i32, *r.rr(opc))
I32.enc(base.copy.i32, *r.ur(0x89))
# Immediate instructions with sign-extended 8-bit and 32-bit immediate.
for inst, rrr in [
(base.iadd_imm.i32, 0),
(base.band_imm.i32, 4),
(base.bor_imm.i32, 1),
(base.bxor_imm.i32, 6)]:
I32.enc(inst, *r.rib(0x83, rrr=rrr))
I32.enc(inst, *r.rid(0x81, rrr=rrr))
I64.enc(base.copy.i64, *r.ur.rex(0x89, w=1))
I64.enc(base.copy.i32, *r.ur.rex(0x89))
I64.enc(base.copy.i32, *r.ur(0x89))
# Immediate constant.
I32.enc(base.iconst.i32, *r.uid(0xb8))
# Immediate instructions with sign-extended 8-bit and 32-bit immediate.
for inst, rrr in [
(base.iadd_imm, 0),
(base.band_imm, 4),
(base.bor_imm, 1),
(base.bxor_imm, 6)]:
I32.enc(inst.i32, *r.rib(0x83, rrr=rrr))
I32.enc(inst.i32, *r.rid(0x81, rrr=rrr))
I64.enc(inst.i64, *r.rib.rex(0x83, rrr=rrr, w=1))
I64.enc(inst.i64, *r.rid.rex(0x81, rrr=rrr, w=1))
I64.enc(inst.i32, *r.rib.rex(0x83, rrr=rrr))
I64.enc(inst.i32, *r.rid.rex(0x81, rrr=rrr))
I64.enc(inst.i32, *r.rib(0x83, rrr=rrr))
I64.enc(inst.i32, *r.rid(0x81, rrr=rrr))
# TODO: band_imm.i64 with an unsigned 32-bit immediate can be encoded as
# band_imm.i32. Can even use the single-byte immediate for 0xffff_ffXX masks.
# Immediate constants.
I32.enc(base.iconst.i32, *r.puid(0xb8))
I64.enc(base.iconst.i32, *r.puid.rex(0xb8))
I64.enc(base.iconst.i32, *r.puid(0xb8))
# The 32-bit immediate movl also zero-extends to 64 bits.
I64.enc(base.iconst.i64, *r.puid.rex(0xb8),
instp=IsUnsignedInt(UnaryImm.imm, 32))
I64.enc(base.iconst.i64, *r.puid(0xb8),
instp=IsUnsignedInt(UnaryImm.imm, 32))
# Sign-extended 32-bit immediate.
I64.enc(base.iconst.i64, *r.uid.rex(0xc7, rrr=0, w=1))
# Finally, the 0xb8 opcode takes an 8-byte immediate with a REX.W prefix.
I64.enc(base.iconst.i64, *r.puiq.rex(0xb8, w=1))
# 32-bit shifts and rotates.
# Note that the dynamic shift amount is only masked by 5 or 6 bits; the 8-bit
@@ -73,3 +108,4 @@ I32.enc(base.sload8.i32.i32, *r.ldDisp32(0x0f, 0xbe))
I32.enc(base.call, *r.call_id(0xe8))
I32.enc(base.call_indirect.i32, *r.call_r(0xff, rrr=2))
I32.enc(base.x_return, *r.ret(0xc3))
I64.enc(base.x_return, *r.ret(0xc3))

View File

@@ -160,6 +160,33 @@ class TailRecipe:
emit=replace_put_op(self.emit, name))
return (self.recipes[name], bits)
def rex(self, *ops, **kwargs):
# type: (*int, **int) -> Tuple[EncRecipe, int]
"""
Create a REX encoding recipe and encoding bits for the opcode bytes in
`ops`.
The recipe will always generate a REX prefix, whether it is required or
not. For instructions that don't require a REX prefix, two encodings
should be added: One with REX and one without.
"""
rrr = kwargs.get('rrr', 0)
w = kwargs.get('w', 0)
name, bits = decode_ops(ops, rrr, w)
name = 'Rex' + name
if name not in self.recipes:
self.recipes[name] = EncRecipe(
name + self.name,
self.format,
1 + len(ops) + self.size,
ins=self.ins,
outs=self.outs,
branch_range=self.branch_range,
instp=self.instp,
isap=self.isap,
emit=replace_put_op(self.emit, name))
return (self.recipes[name], bits)
# XX /r
rr = TailRecipe(
@@ -208,11 +235,21 @@ rid = TailRecipe(
sink.put4(imm as u32);
''')
# XX+rd id unary with 32-bit immediate.
# XX /n id with 32-bit immediate sign-extended. UnaryImm version.
uid = TailRecipe(
'uid', UnaryImm, size=4, ins=(), outs=GPR,
'uid', UnaryImm, size=5, ins=(), outs=GPR,
instp=IsSignedInt(UnaryImm.imm, 32),
emit='''
PUT_OP(bits, rex1(out_reg0), sink);
modrm_r_bits(out_reg0, bits, sink);
let imm: i64 = imm.into();
sink.put4(imm as u32);
''')
# XX+rd id unary with 32-bit immediate. Note no recipe predicate.
puid = TailRecipe(
'uid', UnaryImm, size=4, ins=(), outs=GPR,
emit='''
// The destination register is encoded in the low bits of the opcode.
// No ModR/M.
PUT_OP(bits | (out_reg0 & 7), rex1(out_reg0), sink);
@@ -220,6 +257,15 @@ uid = TailRecipe(
sink.put4(imm as u32);
''')
# XX+rd iq unary with 64-bit immediate.
puiq = TailRecipe(
'uiq', UnaryImm, size=8, ins=(), outs=GPR,
emit='''
PUT_OP(bits | (out_reg0 & 7), rex1(out_reg0), sink);
let imm: i64 = imm.into();
sink.put8(imm as u64);
''')
#
# Store recipes.
#

View File

@@ -44,6 +44,16 @@ fn rex2(rm: RegUnit, reg: RegUnit) -> u8 {
BASE_REX | b | (r << 2)
}
// Emit a REX prefix.
//
// The R, X, and B bits are computed from registers using the functions above. The W bit is
// extracted from `bits`.
fn rex_prefix<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(rex & 0xf8, BASE_REX);
let w = ((bits >> 15) & 1) as u8;
sink.put1(rex | (w << 3));
}
// Emit a single-byte opcode with no REX prefix.
fn put_op1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(bits & 0x8f00, 0, "Invalid encoding bits for Op1*");
@@ -51,6 +61,13 @@ fn put_op1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
sink.put1(bits as u8);
}
// Emit a single-byte opcode with REX prefix.
fn put_rexop1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(bits & 0x0f00, 0, "Invalid encoding bits for Op1*");
rex_prefix(bits, rex, sink);
sink.put1(bits as u8);
}
// Emit two-byte opcode: 0F XX
fn put_op2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(bits & 0x8f00, 0x0400, "Invalid encoding bits for Op2*");