Cleanup, typechecking and documentation nits

This commit is contained in:
Dimo
2017-07-27 18:05:38 -07:00
committed by Jakob Stoklund Olesen
parent 9767654dd7
commit a324d60ccc
3 changed files with 43 additions and 23 deletions

View File

@@ -5,7 +5,6 @@ from __future__ import absolute_import
from .ast import Def, Var, Apply
from .ti import ti_xform, TypeEnv, get_type_env
from functools import reduce
from .typevar import TypeVar
try:
from typing import Union, Iterator, Sequence, Iterable, List, Dict # noqa
@@ -13,6 +12,7 @@ try:
from .ast import Expr, VarMap # noqa
from .isa import TargetISA # noqa
from .ti import TypeConstraint # noqa
from .typevar import TypeVar # noqa
DefApply = Union[Def, Apply]
except ImportError:
pass
@@ -70,12 +70,17 @@ class Rtl(object):
def free_vars(self):
# type: () -> Set[Var]
""" Return the set of free Vars used in self"""
"""Return the set of free Vars corresp. to SSA vals used in self"""
def flow_f(s, d):
# type: (Set[Var], Def) -> Set[Var]
"""Compute the change in the set of free vars across a Def"""
s = s.difference(set(d.defs))
return s.union(set(a for a in d.expr.args if isinstance(a, Var)))
uses = set(d.expr.args[i] for i in d.expr.inst.value_opnums)
for v in uses:
assert isinstance(v, Var)
s.add(v)
return s
return reduce(flow_f, reversed(self.rtl), set([]))
@@ -107,8 +112,9 @@ class Rtl(object):
# type: (Rtl) -> None
"""
Given that there is only 1 possible concrete typing T for self, assign
a singleton TV with the single type t=T[v] for each Var v \in self.
Its an error to call this on an Rtl with more than 1 possible typing.
a singleton TV with type t=T[v] for each Var v \in self. Its an error
to call this on an Rtl with more than 1 possible typing. This modifies
the Rtl in-place.
"""
from .ti import ti_rtl, TypeEnv
# 1) Infer the types of all vars in res
@@ -123,10 +129,8 @@ class Rtl(object):
# 3) Assign the only possible type to each variable.
for v in typenv.vars:
if v.get_typevar().singleton_type() is not None:
continue
v.set_typevar(TypeVar.singleton(typing[v].singleton_type()))
assert typing[v].singleton_type() is not None
v.set_typevar(typing[v])
class XForm(object):

View File

@@ -44,15 +44,20 @@ def find_matching_xform(d):
def cleanup_semantics(r, outputs):
# type: (Rtl, Set[Var]) -> Rtl
"""
The elaboration process creates a lot of redundant instruction pairs of the
shape:
The elaboration process creates a lot of redundant prim_to_bv conversions.
Cleanup the following cases:
1) prim_to_bv/prim_from_bv pair:
a.0 << prim_from_bv(bva.0)
...
bva.1 << prim_to_bv(a.0)
bva.1 << prim_to_bv(a.0) <-- redundant, replace by bva.0
...
Contract these to ease manual inspection.
2) prim_to_bv/prim_to-bv pair:
bva.0 << prim_to_bv(a)
...
bva.1 << prim_to_bv(a) <-- redundant, replace by bva.0
...
"""
new_defs = [] # type: List[Def]
subst_m = {v: v for v in r.vars()} # type: VarMap

View File

@@ -10,8 +10,9 @@ from .elaborate import elaborate
try:
from typing import TYPE_CHECKING, Tuple # noqa
from cdsl.xform import Rtl # noqa
from cdsl.xform import Rtl, XForm # noqa
from cdsl.ast import VarMap # noqa
from cdsl.ti import VarTyping # noqa
except ImportError:
TYPE_CHECKING = False
@@ -34,10 +35,12 @@ def to_smt(r):
assert r.is_concrete()
# Should contain only primitives
primitives = set(PRIMITIVES.instructions)
assert all(d.expr.inst in primitives for d in r.rtl)
assert set(d.expr.inst for d in r.rtl).issubset(primitives)
q = ""
m = {} # type: VarMap
# Build declarations for any bitvector Vars
for v in r.vars():
typ = v.get_typevar().singleton_type()
if not isinstance(typ, BVType):
@@ -45,9 +48,11 @@ def to_smt(r):
q += "(declare-fun {} () {})\n".format(v.name, bvtype_to_sort(typ))
# Encode each instruction as a equality assertion
for d in r.rtl:
inst = d.expr.inst
# For prim_to_bv/prim_from_bv just update var_m. No assertion needed
if inst == prim_to_bv:
assert isinstance(d.expr.args[0], Var)
m[d.expr.args[0]] = d.defs[0]
@@ -82,13 +87,13 @@ def to_smt(r):
.format(df, toW-fromW, arg)
elif inst == bvsplit:
arg = d.expr.args[0]
assert isinstance(arg, Var)
arg_typ = arg.get_typevar().singleton_type()
width = arg_typ.width()
assert (width % 2 == 0)
lo = d.defs[0]
hi = d.defs[1]
assert isinstance(arg, Var)
exp = "(and "
exp += "(= {} ((_ extract {} {}) {})) "\
@@ -97,9 +102,10 @@ def to_smt(r):
.format(hi, width-1, width//2, arg)
exp += ")"
elif inst == bvconcat:
assert isinstance(d.expr.args[0], Var) and \
isinstance(d.expr.args[1], Var)
lo = d.expr.args[0]
hi = d.expr.args[1]
assert isinstance(lo, Var) and isinstance(hi, Var)
df = d.defs[0]
# Z3 Concat expects hi bits first, then lo bits
@@ -127,6 +133,14 @@ def equivalent(r1, r2, inp_m, out_m):
Otherwise, the satisfying example for the query gives us values
for which the two Rtls disagree.
"""
# Sanity - inp_m is a bijection from the set of inputs of r1 to the set of
# inputs of r2
assert set(r1.free_vars()) == set(inp_m.keys())
assert set(r2.free_vars()) == set(inp_m.values())
# Note that the same rule is not expected to hold for out_m due to
# temporaries/intermediates.
# Rename the vars in r1 and r2 with unique suffixes to avoid conflicts
src_m = {v: Var(v.name + ".a", v.get_typevar()) for v in r1.vars()}
dst_m = {v: Var(v.name + ".b", v.get_typevar()) for v in r2.vars()}
@@ -145,7 +159,6 @@ def equivalent(r1, r2, inp_m, out_m):
args_eq_exp = "(and \n"
for v in r1.free_vars():
assert v in inp_m
args_eq_exp += "(= {} {})\n".format(m1[v], m2[inp_m[v]])
args_eq_exp += ")"
@@ -171,12 +184,12 @@ def equivalent(r1, r2, inp_m, out_m):
def xform_correct(x, typing):
# type: (XForm, VarTyping) -> str
"""
Given an XForm x and a concrete variable typing for x typing, build the
smtlib query asserting that x is correct for the given typing.
Given an XForm x and a concrete variable typing for x build the smtlib
query asserting that x is correct for the given typing.
"""
assert x.ti.permits(typing)
# Create copies of the x.src and x.dst with the concrete types in typing.
# Create copies of the x.src and x.dst with their concrete types
src_m = {v: Var(v.name, typing[v]) for v in x.src.vars()}
src = x.src.copy(src_m)
dst = x.apply(src)
@@ -191,8 +204,6 @@ def xform_correct(x, typing):
inp_m[src_m[v]] = dst_m[v]
elif v.is_output():
out_m[src_m[v]] = dst_m[v]
else:
assert False, "Haven't decided what to do with intermediates yet"
# Get the primitive semantic Rtls for src and dst
prim_src = elaborate(src)