Merge pull request #2512 from fitzgen/bench-api-tweaks

bench-api: Clean up the benchmarking API
This commit is contained in:
Nick Fitzgerald
2020-12-15 12:18:34 -08:00
committed by GitHub

View File

@@ -1,145 +1,189 @@
//! Expose a C-compatible API for controlling the Wasmtime engine during benchmarking. The API expects very sequential
//! use:
//! - `engine_create`
//! - `engine_compile_module`
//! - `engine_instantiate_module`
//! - `engine_execute_module`
//! - `engine_free`
//! A C API for benchmarking Wasmtime's WebAssembly compilation, instantiation,
//! and execution.
//!
//! An example of this C-style usage, without error checking, is shown below:
//! The API expects sequential calls to:
//!
//! - `wasm_bench_create`
//! - `wasm_bench_compile`
//! - `wasm_bench_instantiate`
//! - `wasm_bench_execute`
//! - `wasm_bench_free`
//!
//! You may repeat this sequence of calls multiple times to take multiple
//! measurements of compilation, instantiation, and execution time within a
//! single process.
//!
//! All API calls must happen on the same thread.
//!
//! Functions which return pointers use null as an error value. Function which
//! return `int` use `0` as OK and non-zero as an error value.
//!
//! # Example
//!
//! ```
//! use wasmtime_bench_api::*;
//! let module = wat::parse_bytes(br#"(module
//! (func $bench_start (import "bench" "start"))
//! (func $bench_end (import "bench" "end"))
//! (func $start (export "_start")
//! (call $bench_start) (i32.const 2) (i32.const 2) (i32.add) (drop) (call $bench_end))
//! )"#).unwrap();
//! let engine = unsafe { engine_create(module.as_ptr(), module.len()) };
//!
//! // Start compilation timer.
//! unsafe { engine_compile_module(engine) };
//! // End compilation timer.
//! let engine = unsafe { wasm_bench_create() };
//! assert!(!engine.is_null());
//!
//! // The Wasm benchmark will expect us to provide functions to start ("bench" "start") and stop ("bench" "stop") the
//! // measurement counters/timers during execution; here we provide a no-op implementation.
//! extern "C" fn noop() {}
//! let wasm = wat::parse_bytes(br#"
//! (module
//! (func $bench_start (import "bench" "start"))
//! (func $bench_end (import "bench" "end"))
//! (func $start (export "_start")
//! call $bench_start
//! i32.const 1
//! i32.const 2
//! i32.add
//! drop
//! call $bench_end
//! )
//! )
//! "#).unwrap();
//!
//! // Start instantiation timer.
//! unsafe { engine_instantiate_module(engine, noop, noop) };
//! // End instantiation timer.
//! // Start your compilation timer here.
//! let code = unsafe { wasm_bench_compile(engine, wasm.as_ptr(), wasm.len()) };
//! // End your compilation timer here.
//! assert_eq!(code, OK);
//!
//! // No need to start timers for the execution since, by convention, the timer functions we passed during
//! // instantiation will be called by the benchmark at the appropriate time (before and after the benchmarked section).
//! unsafe { engine_execute_module(engine) };
//! // The Wasm benchmark will expect us to provide functions to start ("bench"
//! // "start") and stop ("bench" "stop") the measurement counters/timers during
//! // execution.
//! extern "C" fn bench_start() {
//! // Start your execution timer here.
//! }
//! extern "C" fn bench_stop() {
//! // End your execution timer here.
//! }
//!
//! unsafe { engine_free(engine) }
//! // Start your instantiation timer here.
//! let code = unsafe { wasm_bench_instantiate(engine, bench_start, bench_stop) };
//! // End your instantiation timer here.
//! assert_eq!(code, OK);
//!
//! // No need to start timers for the execution since, by convention, the timer
//! // functions we passed during instantiation will be called by the benchmark
//! // at the appropriate time (before and after the benchmarked section).
//! let code = unsafe { wasm_bench_execute(engine) };
//! assert_eq!(code, OK);
//!
//! unsafe {
//! wasm_bench_free(engine);
//! }
//! ```
use anyhow::{anyhow, Result};
use core::slice;
use std::os::raw::c_int;
use anyhow::{anyhow, Context, Result};
use std::os::raw::{c_int, c_void};
use std::slice;
use wasi_common::WasiCtxBuilder;
use wasmtime::{Config, Engine, Instance, Linker, Module, Store};
use wasmtime_wasi::Wasi;
/// Exposes a C-compatible way of creating the engine from the bytes of a single Wasm module. This function returns a
/// pointer to an opaque structure that contains the engine's initialized state.
pub type ExitCode = c_int;
pub const OK: ExitCode = 0;
pub const ERR: ExitCode = -1;
/// Exposes a C-compatible way of creating the engine from the bytes of a single
/// Wasm module.
///
/// This function returns a pointer to a structure that contains the engine's
/// initialized state.
#[no_mangle]
pub extern "C" fn engine_create(
wasm_bytes: *const u8,
wasm_bytes_length: usize,
) -> *mut OpaqueEngineState {
let wasm_bytes = unsafe { slice::from_raw_parts(wasm_bytes, wasm_bytes_length) };
let state = Box::new(EngineState::new(wasm_bytes));
Box::into_raw(state) as *mut _
pub extern "C" fn wasm_bench_create() -> *mut c_void {
let state = Box::new(BenchState::new());
Box::into_raw(state) as _
}
/// Free the engine state allocated by this library.
#[no_mangle]
pub extern "C" fn engine_free(state: *mut OpaqueEngineState) {
pub extern "C" fn wasm_bench_free(state: *mut c_void) {
assert!(!state.is_null());
unsafe {
Box::from_raw(state);
Box::from_raw(state as *mut BenchState);
}
}
/// Compile the Wasm benchmark module.
#[no_mangle]
pub extern "C" fn engine_compile_module(state: *mut OpaqueEngineState) -> c_int {
let result = unsafe { OpaqueEngineState::convert(state) }.compile();
to_c_error(result, "failed to compile")
pub extern "C" fn wasm_bench_compile(
state: *mut c_void,
wasm_bytes: *const u8,
wasm_bytes_length: usize,
) -> ExitCode {
let state = unsafe { (state as *mut BenchState).as_mut().unwrap() };
let wasm_bytes = unsafe { slice::from_raw_parts(wasm_bytes, wasm_bytes_length) };
let result = state.compile(wasm_bytes).context("failed to compile");
to_exit_code(result)
}
/// Instantiate the Wasm benchmark module.
#[no_mangle]
pub extern "C" fn engine_instantiate_module(
state: *mut OpaqueEngineState,
pub extern "C" fn wasm_bench_instantiate(
state: *mut c_void,
bench_start: extern "C" fn(),
bench_end: extern "C" fn(),
) -> c_int {
let result = unsafe { OpaqueEngineState::convert(state) }.instantiate(bench_start, bench_end);
to_c_error(result, "failed to instantiate")
) -> ExitCode {
let state = unsafe { (state as *mut BenchState).as_mut().unwrap() };
let result = state
.instantiate(bench_start, bench_end)
.context("failed to instantiate");
to_exit_code(result)
}
/// Execute the Wasm benchmark module.
#[no_mangle]
pub extern "C" fn engine_execute_module(state: *mut OpaqueEngineState) -> c_int {
let result = unsafe { OpaqueEngineState::convert(state) }.execute();
to_c_error(result, "failed to execute")
pub extern "C" fn wasm_bench_execute(state: *mut c_void) -> ExitCode {
let state = unsafe { (state as *mut BenchState).as_mut().unwrap() };
let result = state.execute().context("failed to execute");
to_exit_code(result)
}
/// Helper function for converting a Rust result to a C error code (0 == success). Additionally, this will print an
/// error indicating some information regarding the failure.
fn to_c_error<T>(result: Result<T>, message: &str) -> c_int {
match result {
Ok(_) => 0,
/// Helper function for converting a Rust result to a C error code.
///
/// This will print an error indicating some information regarding the failure.
fn to_exit_code<T>(result: impl Into<Result<T>>) -> ExitCode {
match result.into() {
Ok(_) => OK,
Err(error) => {
println!("{}: {:?}", message, error);
1
eprintln!("{:?}", error);
ERR
}
}
}
/// Opaque pointer type for hiding the engine state details.
#[repr(C)]
pub struct OpaqueEngineState {
_private: [u8; 0],
}
impl OpaqueEngineState {
unsafe fn convert(ptr: *mut OpaqueEngineState) -> &'static mut EngineState<'static> {
assert!(!ptr.is_null());
&mut *(ptr as *mut EngineState)
}
}
/// This structure contains the actual Rust implementation of the state required to manage the Wasmtime engine between
/// calls.
struct EngineState<'a> {
bytes: &'a [u8],
/// This structure contains the actual Rust implementation of the state required
/// to manage the Wasmtime engine between calls.
struct BenchState {
engine: Engine,
store: Store,
module: Option<Module>,
instance: Option<Instance>,
did_execute: bool,
}
impl<'a> EngineState<'a> {
fn new(bytes: &'a [u8]) -> Self {
// TODO turn off caching?
impl BenchState {
fn new() -> Self {
let mut config = Config::new();
config.wasm_simd(true);
// NB: do not configure a code cache.
let engine = Engine::new(&config);
let store = Store::new(&engine);
Self {
bytes,
engine,
store,
module: None,
instance: None,
did_execute: false,
}
}
fn compile(&mut self) -> Result<()> {
self.module = Some(Module::from_binary(&self.engine, self.bytes)?);
fn compile(&mut self, bytes: &[u8]) -> Result<()> {
assert!(
self.module.is_none(),
"create a new engine to repeat compilation"
);
self.module = Some(Module::from_binary(&self.engine, bytes)?);
Ok(())
}
@@ -148,51 +192,57 @@ impl<'a> EngineState<'a> {
bench_start: extern "C" fn(),
bench_end: extern "C" fn(),
) -> Result<()> {
// TODO instantiate WASI modules?
match &self.module {
Some(module) => {
let mut linker = Linker::new(&self.store);
assert!(
self.instance.is_none(),
"create a new engine to repeat instantiation"
);
let module = self
.module
.as_mut()
.expect("compile the module before instantiating it");
// Import a very restricted WASI environment.
let mut cx = WasiCtxBuilder::new();
cx.inherit_stdio();
let cx = cx.build()?;
let wasi = Wasi::new(linker.store(), cx);
wasi.add_to_linker(&mut linker)?;
let mut linker = Linker::new(&self.store);
// Import the specialized benchmarking functions.
linker.func("bench", "start", move || bench_start())?;
linker.func("bench", "end", move || bench_end())?;
// Import a very restricted WASI environment.
let mut cx = WasiCtxBuilder::new();
cx.inherit_stdio();
let cx = cx.build()?;
let wasi = Wasi::new(linker.store(), cx);
wasi.add_to_linker(&mut linker)?;
self.instance = Some(linker.instantiate(module)?);
}
None => panic!("compile the module before instantiating it"),
}
// Import the specialized benchmarking functions.
linker.func("bench", "start", move || bench_start())?;
linker.func("bench", "end", move || bench_end())?;
self.instance = Some(linker.instantiate(&module)?);
Ok(())
}
fn execute(&self) -> Result<()> {
match &self.instance {
Some(instance) => {
let start_func = instance.get_func("_start").expect("a _start function");
let runnable_func = start_func.get0::<()>()?;
match runnable_func() {
Ok(_) => {}
Err(trap) => {
// Since _start will likely return by using the system `exit` call, we must
// check the trap code to see if it actually represents a successful exit.
let status = trap.i32_exit_status();
if status != Some(0) {
return Err(anyhow!(
"_start exited with a non-zero code: {}",
status.unwrap()
));
}
}
};
fn execute(&mut self) -> Result<()> {
assert!(!self.did_execute, "create a new engine to repeat execution");
self.did_execute = true;
let instance = self
.instance
.as_ref()
.expect("instantiate the module before executing it");
let start_func = instance.get_func("_start").expect("a _start function");
let runnable_func = start_func.get0::<()>()?;
match runnable_func() {
Ok(_) => Ok(()),
Err(trap) => {
// Since _start will likely return by using the system `exit` call, we must
// check the trap code to see if it actually represents a successful exit.
match trap.i32_exit_status() {
Some(0) => Ok(()),
Some(n) => Err(anyhow!("_start exited with a non-zero code: {}", n)),
None => Err(anyhow!(
"executing the benchmark resulted in a trap: {}",
trap
)),
}
}
None => panic!("instantiate the module before executing it"),
}
Ok(())
}
}