Merge pull request #26 from cfallin/new-checker

Rework checker to not require DefAlloc by tracking all vregs on each alloc.
This commit is contained in:
Chris Fallin
2022-01-25 16:18:05 -08:00
committed by GitHub
4 changed files with 318 additions and 288 deletions

View File

@@ -3,7 +3,7 @@
* regalloc.rs project
* (https://github.com/bytecodealliance/regalloc.rs). regalloc.rs is
* also licensed under Apache-2.0 with the LLVM exception, as the rest
* of regalloc2's non-Ion-derived code is.
* of regalloc2 is.
*/
//! Checker: verifies that spills/reloads/moves retain equivalent
@@ -17,55 +17,75 @@
//! conceptually generates a symbolic value "Vn" when storing to (or
//! modifying) a virtual register.
//!
//! A symbolic value is logically a *set of virtual registers*,
//! representing all virtual registers equal to the value in the given
//! storage slot at a given program point. This representation (as
//! opposed to tracking just one virtual register) is necessary
//! because the regalloc may implement moves in the source program
//! (via move instructions or blockparam assignments on edges) in
//! "intelligent" ways, taking advantage of values that are already in
//! the right place, so we need to know *all* names for a value.
//!
//! These symbolic values are precise but partial: in other words, if
//! a physical register is described as containing a virtual register
//! at a program point, it must actually contain the value of this
//! register (modulo any analysis bugs); but it may resolve to
//! `Conflicts` even in cases where one *could* statically prove that
//! it contains a certain register, because the analysis is not
//! register (modulo any analysis bugs); but it may describe fewer
//! virtual registers even in cases where one *could* statically prove
//! that it contains a certain register, because the analysis is not
//! perfectly path-sensitive or value-sensitive. However, all
//! assignments *produced by our register allocator* should be
//! analyzed fully precisely.
//! analyzed fully precisely. (This last point is important and bears
//! repeating: we only need to verify the programs that we produce,
//! not arbitrary programs.)
//!
//! Operand constraints (fixed register, register, any) are also checked
//! at each operand.
//!
//! The dataflow analysis state at each program point is:
//! ## Formal Definition
//!
//! - map of: Allocation -> lattice value (top > Vn symbols (unordered) > bottom)
//! The analysis lattice is:
//!
//! ```plain
//! Top (V)
//! |
//! 𝒫(V) // the Powerset of the set of virtual regs
//! |
//! Bottom ( ∅ ) // the empty set
//! ```
//!
//! and the lattice ordering relation is the subset relation: S ≤ U
//! iff S ⊆ U. The lattice meet-function is intersection.
//!
//! The dataflow analysis state at each program point (each point
//! before or after an instruction) is:
//!
//! - map of: Allocation -> lattice value
//!
//! And the transfer functions for instructions are (where `A` is the
//! above map from allocated physical registers to symbolic values):
//! above map from allocated physical registers to lattice values):
//!
//! - `Edit::Move` inserted by RA: [ alloc_d := alloc_s ]
//!
//! A[alloc_d] := A[alloc_s]
//!
//! - phi-node [ V_i := phi block_j:V_j, block_k:V_k, ... ]
//! with allocations [ A_i := phi block_j:A_j, block_k:A_k, ... ]
//! (N.B.: phi-nodes are not semantically present in the final
//! machine code, but we include their allocations so that this
//! checker can work)
//!
//! A[A_i] := meet(A[A_j], A[A_k], ...)
//! A' = A[alloc_d A[alloc_s]]
//!
//! - statement in pre-regalloc function [ V_i := op V_j, V_k, ... ]
//! with allocated form [ A_i := op A_j, A_k, ... ]
//!
//! A[A_i] := `V_i`
//! A' = { A_k → A[A_k] \ { V_i } for k ≠ i }
//! { A_i -> { V_i } }
//!
//! In other words, a statement, even after allocation, generates
//! a symbol that corresponds to its original virtual-register
//! def.
//! def. Simultaneously, that same virtual register symbol is removed
//! from all other allocs: they no longer carry the current value.
//!
//! (N.B.: moves in pre-regalloc function fall into this last case
//! -- they are "just another operation" and generate a new
//! symbol)
//! - Parallel moves or blockparam-assignments in original program
//! [ V_d1 := V_s1, V_d2 := V_s2, ... ]
//!
//! At control-flow join points, the symbols meet using a very simple
//! lattice meet-function: two different symbols in the same
//! allocation meet to "conflicted"; otherwise, the symbol meets with
//! itself to produce itself (reflexivity).
//! A' = { A_k → subst(A[A_k]) for all k }
//! where subst(S) removes symbols for overwritten virtual
//! registers (V_d1 .. V_dn) and then adds V_di whenever
//! V_si appeared prior to the removals.
//!
//! To check correctness, we first find the dataflow fixpoint with the
//! above lattice and transfer/meet functions. Then, at each op, we
@@ -80,8 +100,9 @@ use crate::{
Allocation, AllocationKind, Block, Edit, Function, Inst, InstOrEdit, InstPosition, Operand,
OperandConstraint, OperandKind, OperandPos, Output, PReg, RegClass, VReg,
};
use std::collections::{HashMap, HashSet, VecDeque};
use fxhash::{FxHashMap, FxHashSet};
use smallvec::{smallvec, SmallVec};
use std::collections::VecDeque;
use std::default::Default;
use std::hash::Hash;
use std::result::Result;
@@ -109,11 +130,11 @@ pub enum CheckerError {
op: Operand,
alloc: Allocation,
},
IncorrectValueInAllocation {
IncorrectValuesInAllocation {
inst: Inst,
op: Operand,
alloc: Allocation,
actual: VReg,
actual: FxHashSet<VReg>,
},
ConstraintViolated {
inst: Inst,
@@ -145,55 +166,64 @@ pub enum CheckerError {
inst: Inst,
alloc: Allocation,
},
NonRefValueInStackmap {
NonRefValuesInStackmap {
inst: Inst,
alloc: Allocation,
vreg: VReg,
vregs: FxHashSet<VReg>,
},
}
/// Abstract state for an allocation.
///
/// Forms a lattice with \top (`Unknown`), \bot (`Conflicted`), and a
/// number of mutually unordered value-points in between, one per real
/// or virtual register. Any two different registers meet to \bot.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum CheckerValue {
/// "top" value: this storage slot has no known value.
Unknown,
/// "bottom" value: this storage slot has a conflicted value.
Conflicted,
/// Reg: this storage slot has a value that originated as a def
/// into the given virtual register.
///
/// The boolean flag indicates whether the value is
/// reference-typed.
Reg(VReg, bool),
/// Equivalent to a set of virtual register names, with the
/// universe-set as top and empty set as bottom lattice element. The
/// meet-function is thus set intersection.
#[derive(Clone, Debug, PartialEq, Eq)]
struct CheckerValue {
/// This value is the "universe set".
universe: bool,
/// The VRegs that this value is equal to.
vregs: FxHashSet<VReg>,
}
impl Default for CheckerValue {
fn default() -> CheckerValue {
CheckerValue::Unknown
CheckerValue {
universe: true,
vregs: FxHashSet::default(),
}
}
}
impl CheckerValue {
/// Meet function of the abstract-interpretation value lattice.
fn meet(&self, other: &CheckerValue) -> CheckerValue {
match (self, other) {
(&CheckerValue::Unknown, _) => *other,
(_, &CheckerValue::Unknown) => *self,
(&CheckerValue::Conflicted, _) => *self,
(_, &CheckerValue::Conflicted) => *other,
(&CheckerValue::Reg(r1, ref1), &CheckerValue::Reg(r2, ref2))
if r1 == r2 && ref1 == ref2 =>
{
CheckerValue::Reg(r1, ref1)
}
_ => {
trace!("{:?} and {:?} meet to Conflicted", self, other);
CheckerValue::Conflicted
}
/// Meet function of the abstract-interpretation value
/// lattice. Returns a boolean value indicating whether `self` was
/// changed.
fn meet_with(&mut self, other: &CheckerValue) {
if other.universe {
// Nothing.
} else if self.universe {
*self = other.clone();
} else {
self.vregs.retain(|vreg| other.vregs.contains(vreg));
}
}
fn from_reg(reg: VReg) -> CheckerValue {
CheckerValue {
universe: false,
vregs: std::iter::once(reg).collect(),
}
}
fn remove_vreg(&mut self, reg: VReg) {
self.vregs.remove(&reg);
}
fn empty() -> CheckerValue {
CheckerValue {
universe: false,
vregs: FxHashSet::default(),
}
}
}
@@ -201,36 +231,46 @@ impl CheckerValue {
/// State that steps through program points as we scan over the instruction stream.
#[derive(Clone, Debug, PartialEq, Eq)]
struct CheckerState {
allocations: HashMap<Allocation, CheckerValue>,
top: bool,
allocations: FxHashMap<Allocation, CheckerValue>,
}
impl Default for CheckerState {
fn default() -> CheckerState {
CheckerState {
allocations: HashMap::new(),
top: true,
allocations: FxHashMap::default(),
}
}
}
impl std::fmt::Display for CheckerValue {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
CheckerValue::Unknown => write!(f, "?"),
CheckerValue::Conflicted => write!(f, "!"),
CheckerValue::Reg(r, false) => write!(f, "{}", r),
CheckerValue::Reg(r, true) => write!(f, "{}/ref", r),
if self.universe {
write!(f, "top")
} else {
write!(f, "{{ ")?;
for vreg in &self.vregs {
write!(f, "{} ", vreg)?;
}
write!(f, "}}")?;
Ok(())
}
}
}
/// Meet function for analysis value: meet individual values at
/// matching allocations, and intersect keys (remove key-value pairs
/// only on one side). Returns boolean flag indicating whether `into`
/// changed.
fn merge_map<K: Copy + Clone + PartialEq + Eq + Hash>(
into: &mut HashMap<K, CheckerValue>,
from: &HashMap<K, CheckerValue>,
into: &mut FxHashMap<K, CheckerValue>,
from: &FxHashMap<K, CheckerValue>,
) {
for (k, v) in from {
let into_v = into.entry(*k).or_insert(Default::default());
let merged = into_v.meet(v);
*into_v = merged;
into.retain(|k, _| from.contains_key(k));
for (k, into_v) in into.iter_mut() {
let from_v = from.get(k).unwrap();
into_v.meet_with(from_v);
}
}
@@ -242,7 +282,14 @@ impl CheckerState {
/// Merge this checker state with another at a CFG join-point.
fn meet_with(&mut self, other: &CheckerState) {
merge_map(&mut self.allocations, &other.allocations);
if other.top {
// Nothing.
} else if self.top {
*self = other.clone();
} else {
self.top = false;
merge_map(&mut self.allocations, &other.allocations);
}
}
fn check_val(
@@ -250,29 +297,24 @@ impl CheckerState {
inst: Inst,
op: Operand,
alloc: Allocation,
val: CheckerValue,
val: &CheckerValue,
allocs: &[Allocation],
) -> Result<(), CheckerError> {
if alloc == Allocation::none() {
return Err(CheckerError::MissingAllocation { inst, op });
}
match val {
CheckerValue::Unknown => {
return Err(CheckerError::UnknownValueInAllocation { inst, op, alloc });
}
CheckerValue::Conflicted => {
return Err(CheckerError::ConflictedValueInAllocation { inst, op, alloc });
}
CheckerValue::Reg(r, _) if r != op.vreg() => {
return Err(CheckerError::IncorrectValueInAllocation {
inst,
op,
alloc,
actual: r,
});
}
_ => {}
if val.universe {
return Err(CheckerError::UnknownValueInAllocation { inst, op, alloc });
}
if !val.vregs.contains(&op.vreg()) {
return Err(CheckerError::IncorrectValuesInAllocation {
inst,
op,
alloc,
actual: val.vregs.clone(),
});
}
self.check_constraint(inst, op, alloc, allocs)?;
@@ -283,7 +325,13 @@ impl CheckerState {
/// Check an instruction against this state. This must be called
/// twice: once with `InstPosition::Before`, and once with
/// `InstPosition::After` (after updating state with defs).
fn check(&self, pos: InstPosition, checkinst: &CheckerInst) -> Result<(), CheckerError> {
fn check<'a, F: Function>(
&self,
pos: InstPosition,
checkinst: &CheckerInst,
checker: &Checker<'a, F>,
) -> Result<(), CheckerError> {
let default_val = Default::default();
match checkinst {
&CheckerInst::Op {
inst,
@@ -317,11 +365,7 @@ impl CheckerState {
continue;
}
let val = self
.allocations
.get(alloc)
.cloned()
.unwrap_or(Default::default());
let val = self.allocations.get(alloc).unwrap_or(&default_val);
trace!(
"checker: checkinst {:?}: op {:?}, alloc {:?}, checker value {:?}",
checkinst,
@@ -334,11 +378,7 @@ impl CheckerState {
}
&CheckerInst::Safepoint { inst, ref allocs } => {
for &alloc in allocs {
let val = self
.allocations
.get(&alloc)
.cloned()
.unwrap_or(Default::default());
let val = self.allocations.get(&alloc).unwrap_or(&default_val);
trace!(
"checker: checkinst {:?}: safepoint slot {}, checker value {:?}",
checkinst,
@@ -346,32 +386,35 @@ impl CheckerState {
val
);
match val {
CheckerValue::Unknown => {}
CheckerValue::Conflicted => {
return Err(CheckerError::ConflictedValueInStackmap { inst, alloc });
}
CheckerValue::Reg(vreg, false) => {
return Err(CheckerError::NonRefValueInStackmap { inst, alloc, vreg });
}
CheckerValue::Reg(_, true) => {}
let reffy = val
.vregs
.iter()
.any(|vreg| checker.reftyped_vregs.contains(vreg));
if !reffy {
return Err(CheckerError::NonRefValuesInStackmap {
inst,
alloc,
vregs: val.vregs.clone(),
});
}
}
}
_ => {}
&CheckerInst::ParallelMove { .. } | &CheckerInst::Move { .. } => {
// This doesn't need verification; we just update
// according to the move semantics in the step
// function below.
}
}
Ok(())
}
/// Update according to instruction.
fn update<'a, F: Function>(&mut self, checkinst: &CheckerInst, checker: &Checker<'a, F>) {
self.top = false;
let default_val = Default::default();
match checkinst {
&CheckerInst::Move { into, from } => {
let val = self
.allocations
.get(&from)
.cloned()
.unwrap_or(Default::default());
let val = self.allocations.get(&from).unwrap_or(&default_val).clone();
trace!(
"checker: checkinst {:?} updating: move {:?} -> {:?} val {:?}",
checkinst,
@@ -381,35 +424,83 @@ impl CheckerState {
);
self.allocations.insert(into, val);
}
&CheckerInst::ParallelMove { ref moves } => {
// First, build map of actions for each vreg in an
// alloc. If an alloc has a reg V_i before a parallel
// move, then for each use of V_i as a source (V_i ->
// V_j), we might add a new V_j wherever V_i appears;
// and if V_i is used as a dest (at most once), then
// it must be removed first from allocs' vreg sets.
let mut additions: FxHashMap<VReg, SmallVec<[VReg; 2]>> = FxHashMap::default();
let mut deletions: FxHashSet<VReg> = FxHashSet::default();
for &(dest, src) in moves {
deletions.insert(dest);
additions
.entry(src)
.or_insert_with(|| smallvec![])
.push(dest);
}
// Now process each allocation's set of vreg labels,
// first deleting those labels that were updated by
// this parallel move, then adding back labels
// redefined by the move.
for value in self.allocations.values_mut() {
if value.universe {
continue;
}
let mut insertions: SmallVec<[VReg; 2]> = smallvec![];
for &vreg in &value.vregs {
if let Some(additions) = additions.get(&vreg) {
insertions.extend(additions.iter().cloned());
}
}
for &d in &deletions {
value.vregs.remove(&d);
}
value.vregs.extend(insertions);
}
}
&CheckerInst::Op {
ref operands,
ref allocs,
ref clobbers,
..
} => {
// For each def, (i) update alloc to reflect defined
// vreg (and only that vreg), and (ii) update all
// other allocs in the checker state by removing this
// vreg, if defined (other defs are now stale).
for (op, alloc) in operands.iter().zip(allocs.iter()) {
if op.kind() != OperandKind::Def {
continue;
}
let reftyped = checker.reftyped_vregs.contains(&op.vreg());
self.allocations
.insert(*alloc, CheckerValue::Reg(op.vreg(), reftyped));
.insert(*alloc, CheckerValue::from_reg(op.vreg()));
for (other_alloc, other_value) in &mut self.allocations {
if *alloc != *other_alloc {
other_value.remove_vreg(op.vreg());
}
}
}
for clobber in clobbers {
self.allocations.remove(&Allocation::reg(*clobber));
}
}
&CheckerInst::DefAlloc { alloc, vreg } => {
let reftyped = checker.reftyped_vregs.contains(&vreg);
self.allocations
.insert(alloc, CheckerValue::Reg(vreg, reftyped));
}
&CheckerInst::Safepoint { ref allocs, .. } => {
for (alloc, value) in &mut self.allocations {
if let CheckerValue::Reg(_, true) = *value {
if !allocs.contains(&alloc) {
*value = CheckerValue::Conflicted;
}
if alloc.is_reg() {
continue;
}
if !allocs.contains(&alloc) {
// Remove all reftyped vregs as labels.
let new_vregs = value
.vregs
.difference(&checker.reftyped_vregs)
.cloned()
.collect();
value.vregs = new_vregs;
}
}
}
@@ -475,6 +566,15 @@ pub(crate) enum CheckerInst {
/// spillslots).
Move { into: Allocation, from: Allocation },
/// A parallel move in the original program. Simultaneously moves
/// from all source vregs to all corresponding dest vregs,
/// permitting overlap in the src and dest sets and doing all
/// reads before any writes.
ParallelMove {
/// Vector of (dest, src) moves.
moves: Vec<(VReg, VReg)>,
},
/// A regular instruction with fixed use and def slots. Contains
/// both the original operands (as given to the regalloc) and the
/// allocation results.
@@ -485,11 +585,6 @@ pub(crate) enum CheckerInst {
clobbers: Vec<PReg>,
},
/// Define an allocation's contents. Like BlockParams but for one
/// allocation. Used sometimes when moves are elided but ownership
/// of a value is logically transferred to a new vreg.
DefAlloc { alloc: Allocation, vreg: VReg },
/// A safepoint, with the given Allocations specified as containing
/// reftyped values. All other reftyped values become invalid.
Safepoint { inst: Inst, allocs: Vec<Allocation> },
@@ -498,9 +593,10 @@ pub(crate) enum CheckerInst {
#[derive(Debug)]
pub struct Checker<'a, F: Function> {
f: &'a F,
bb_in: HashMap<Block, CheckerState>,
bb_insts: HashMap<Block, Vec<CheckerInst>>,
reftyped_vregs: HashSet<VReg>,
bb_in: FxHashMap<Block, CheckerState>,
bb_insts: FxHashMap<Block, Vec<CheckerInst>>,
edge_insts: FxHashMap<(Block, Block), Vec<CheckerInst>>,
reftyped_vregs: FxHashSet<VReg>,
}
impl<'a, F: Function> Checker<'a, F> {
@@ -509,14 +605,18 @@ impl<'a, F: Function> Checker<'a, F> {
/// methods to add abstract instructions to each BB before
/// invoking `run()` to check for errors.
pub fn new(f: &'a F) -> Checker<'a, F> {
let mut bb_in = HashMap::new();
let mut bb_insts = HashMap::new();
let mut reftyped_vregs = HashSet::new();
let mut bb_in = FxHashMap::default();
let mut bb_insts = FxHashMap::default();
let mut edge_insts = FxHashMap::default();
let mut reftyped_vregs = FxHashSet::default();
for block in 0..f.num_blocks() {
let block = Block::new(block);
bb_in.insert(block, Default::default());
bb_insts.insert(block, vec![]);
for &succ in f.block_succs(block) {
edge_insts.insert((block, succ), vec![]);
}
}
for &vreg in f.reftype_vregs() {
@@ -527,6 +627,7 @@ impl<'a, F: Function> Checker<'a, F> {
f,
bb_in,
bb_insts,
edge_insts,
reftyped_vregs,
}
}
@@ -536,7 +637,7 @@ impl<'a, F: Function> Checker<'a, F> {
pub fn prepare(&mut self, out: &Output) {
trace!("checker: out = {:?}", out);
// Preprocess safepoint stack-maps into per-inst vecs.
let mut safepoint_slots: HashMap<Inst, Vec<Allocation>> = HashMap::new();
let mut safepoint_slots: FxHashMap<Inst, Vec<Allocation>> = FxHashMap::default();
for &(progpoint, slot) in &out.safepoint_slots {
safepoint_slots
.entry(progpoint.inst())
@@ -565,7 +666,7 @@ impl<'a, F: Function> Checker<'a, F> {
&mut self,
block: Block,
inst: Inst,
safepoint_slots: &mut HashMap<Inst, Vec<Allocation>>,
safepoint_slots: &mut FxHashMap<Inst, Vec<Allocation>>,
out: &Output,
) {
// If this is a safepoint, then check the spillslots at this point.
@@ -576,10 +677,9 @@ impl<'a, F: Function> Checker<'a, F> {
self.bb_insts.get_mut(&block).unwrap().push(checkinst);
}
// Skip if this is a branch: the blockparams do not
// exist in post-regalloc code, and the edge-moves
// have to be inserted before the branch rather than
// after.
// Skip normal checks if this is a branch: the blockparams do
// not exist in post-regalloc code, and the edge-moves have to
// be inserted before the branch rather than after.
if !self.f.is_branch(inst) {
// Instruction itself.
let operands: Vec<_> = self.f.inst_operands(inst).iter().cloned().collect();
@@ -594,6 +694,22 @@ impl<'a, F: Function> Checker<'a, F> {
trace!("checker: adding inst {:?}", checkinst);
self.bb_insts.get_mut(&block).unwrap().push(checkinst);
}
// Instead, if this is a branch, emit a ParallelMove on each
// outgoing edge as necessary to handle blockparams.
else {
for (i, &succ) in self.f.block_succs(block).iter().enumerate() {
let args = self.f.branch_blockparams(block, inst, i);
let params = self.f.block_params(succ);
assert_eq!(args.len(), params.len());
if args.len() > 0 {
let moves = params.iter().cloned().zip(args.iter().cloned()).collect();
self.edge_insts
.get_mut(&(block, succ))
.unwrap()
.push(CheckerInst::ParallelMove { moves });
}
}
}
}
fn handle_edit(&mut self, block: Block, edit: &Edit) {
@@ -605,19 +721,13 @@ impl<'a, F: Function> Checker<'a, F> {
.unwrap()
.push(CheckerInst::Move { into: to, from });
}
&Edit::DefAlloc { alloc, vreg } => {
self.bb_insts
.get_mut(&block)
.unwrap()
.push(CheckerInst::DefAlloc { alloc, vreg });
}
}
}
/// Perform the dataflow analysis to compute checker state at each BB entry.
fn analyze(&mut self) {
let mut queue = VecDeque::new();
let mut queue_set = HashSet::new();
let mut queue_set = FxHashSet::default();
for block in 0..self.f.num_blocks() {
let block = Block::new(block);
queue.push_back(block);
@@ -635,10 +745,29 @@ impl<'a, F: Function> Checker<'a, F> {
}
for &succ in self.f.block_succs(block) {
let cur_succ_in = self.bb_in.get(&succ).unwrap();
let mut new_state = state.clone();
for edge_inst in self.edge_insts.get(&(block, succ)).unwrap() {
new_state.update(edge_inst, self);
trace!(
"analyze: succ {:?}: inst {:?} -> state {:?}",
succ,
edge_inst,
new_state
);
}
let cur_succ_in = self.bb_in.get(&succ).unwrap();
trace!(
"meeting state {:?} for block {} with state {:?} for block {}",
new_state,
block.index(),
cur_succ_in,
succ.index()
);
new_state.meet_with(cur_succ_in);
let changed = &new_state != cur_succ_in;
trace!(" -> {:?}, changed {}", new_state, changed);
if changed {
trace!(
"analyze: block {} state changed from {:?} to {:?}; pushing onto queue",
@@ -664,12 +793,12 @@ impl<'a, F: Function> Checker<'a, F> {
for (block, input) in &self.bb_in {
let mut state = input.clone();
for inst in self.bb_insts.get(block).unwrap() {
if let Err(e) = state.check(InstPosition::Before, inst) {
if let Err(e) = state.check(InstPosition::Before, inst, self) {
trace!("Checker error: {:?}", e);
errors.push(e);
}
state.update(inst, self);
if let Err(e) = state.check(InstPosition::After, inst) {
if let Err(e) = state.check(InstPosition::After, inst, self) {
trace!("Checker error: {:?}", e);
errors.push(e);
}
@@ -725,9 +854,6 @@ impl<'a, F: Function> Checker<'a, F> {
&CheckerInst::Move { from, into } => {
trace!(" {} -> {}", from, into);
}
&CheckerInst::DefAlloc { alloc, vreg } => {
trace!(" defalloc: {}:{}", vreg, alloc);
}
&CheckerInst::Safepoint { ref allocs, .. } => {
let mut slotargs = vec![];
for &slot in allocs {
@@ -735,10 +861,32 @@ impl<'a, F: Function> Checker<'a, F> {
}
trace!(" safepoint: {}", slotargs.join(", "));
}
&CheckerInst::ParallelMove { .. } => {
panic!("unexpected parallel_move in body (non-edge)")
}
}
state.update(inst, &self);
print_state(&state);
}
for &succ in self.f.block_succs(bb) {
trace!(" succ {:?}:", succ);
let mut state = state.clone();
for edge_inst in self.edge_insts.get(&(bb, succ)).unwrap() {
match edge_inst {
&CheckerInst::ParallelMove { ref moves } => {
let moves = moves
.iter()
.map(|(dest, src)| format!("{} -> {}", src, dest))
.collect::<Vec<_>>();
trace!(" parallel_move {}", moves.join(", "));
}
_ => panic!("unexpected edge_inst: not a parallel move"),
}
state.update(edge_inst, &self);
print_state(&state);
}
}
}
result

View File

@@ -1017,60 +1017,29 @@ impl<'a, F: Function> Env<'a, F> {
}
if self.allocation_is_stack(src) && self.allocation_is_stack(dst) {
if !scratch_used_yet {
self.add_move_edit(
pos_prio,
src,
Allocation::reg(scratch),
to_vreg,
);
self.add_move_edit(
pos_prio,
Allocation::reg(scratch),
dst,
to_vreg,
);
self.add_move_edit(pos_prio, src, Allocation::reg(scratch));
self.add_move_edit(pos_prio, Allocation::reg(scratch), dst);
} else {
debug_assert!(extra_slot.is_some());
self.add_move_edit(
pos_prio,
Allocation::reg(scratch),
extra_slot.unwrap(),
None,
);
self.add_move_edit(
pos_prio,
src,
Allocation::reg(scratch),
to_vreg,
);
self.add_move_edit(
pos_prio,
Allocation::reg(scratch),
dst,
to_vreg,
);
self.add_move_edit(pos_prio, src, Allocation::reg(scratch));
self.add_move_edit(pos_prio, Allocation::reg(scratch), dst);
self.add_move_edit(
pos_prio,
extra_slot.unwrap(),
Allocation::reg(scratch),
None,
);
}
} else {
self.add_move_edit(pos_prio, src, dst, to_vreg);
self.add_move_edit(pos_prio, src, dst);
}
} else {
trace!(" -> redundant move elided");
}
#[cfg(feature = "checker")]
if let Some((alloc, vreg)) = action.def_alloc {
trace!(
" -> converted to DefAlloc: alloc {} vreg {}",
alloc,
vreg
);
self.edits.push((pos_prio, Edit::DefAlloc { alloc, vreg }));
}
}
}
@@ -1086,48 +1055,6 @@ impl<'a, F: Function> Env<'a, F> {
);
let action = redundant_moves.process_move(m.from_alloc, m.to_alloc, m.to_vreg);
debug_assert!(action.elide);
if let Some((alloc, vreg)) = action.def_alloc {
trace!(" -> DefAlloc: alloc {} vreg {}", alloc, vreg);
self.edits.push((pos_prio, Edit::DefAlloc { alloc, vreg }));
}
}
}
#[cfg(feature = "checker")]
{
// Add edits to describe blockparam locations too. This is
// required by the checker. This comes after any edge-moves.
use crate::ion::data_structures::u64_key;
self.blockparam_allocs
.sort_unstable_by_key(|&(block, idx, _, _)| u64_key(block.raw_u32(), idx));
self.stats.blockparam_allocs_count = self.blockparam_allocs.len();
let mut i = 0;
while i < self.blockparam_allocs.len() {
let start = i;
let block = self.blockparam_allocs[i].0;
while i < self.blockparam_allocs.len() && self.blockparam_allocs[i].0 == block {
i += 1;
}
let params = &self.blockparam_allocs[start..i];
let vregs = params
.iter()
.map(|(_, _, vreg_idx, _)| self.vreg_regs[vreg_idx.index()])
.collect::<Vec<_>>();
let allocs = params
.iter()
.map(|(_, _, _, alloc)| *alloc)
.collect::<Vec<_>>();
debug_assert_eq!(vregs.len(), self.func.block_params(block).len());
debug_assert_eq!(allocs.len(), self.func.block_params(block).len());
for (vreg, alloc) in vregs.into_iter().zip(allocs.into_iter()) {
self.edits.push((
PosWithPrio {
pos: self.cfginfo.block_entry[block.index()],
prio: InsertMovePrio::BlockParam as u32,
},
Edit::DefAlloc { alloc, vreg },
));
}
}
}
@@ -1146,38 +1073,17 @@ impl<'a, F: Function> Env<'a, F> {
&Edit::Move { from, to } => {
self.annotate(pos_prio.pos, format!("move {} -> {})", from, to));
}
&Edit::DefAlloc { alloc, vreg } => {
let s = format!("defalloc {:?} := {:?}", alloc, vreg);
self.annotate(pos_prio.pos, s);
}
}
}
}
}
pub fn add_move_edit(
&mut self,
pos_prio: PosWithPrio,
from: Allocation,
to: Allocation,
_to_vreg: Option<VReg>,
) {
pub fn add_move_edit(&mut self, pos_prio: PosWithPrio, from: Allocation, to: Allocation) {
if from != to {
if from.is_reg() && to.is_reg() {
debug_assert_eq!(from.as_reg().unwrap().class(), to.as_reg().unwrap().class());
}
self.edits.push((pos_prio, Edit::Move { from, to }));
}
#[cfg(feature = "checker")]
if let Some(to_vreg) = _to_vreg {
self.edits.push((
pos_prio,
Edit::DefAlloc {
alloc: to,
vreg: to_vreg,
},
));
}
}
}

View File

@@ -18,8 +18,6 @@ pub struct RedundantMoveEliminator {
#[derive(Copy, Clone, Debug)]
pub struct RedundantMoveAction {
pub elide: bool,
#[cfg(feature = "checker")]
pub def_alloc: Option<(Allocation, VReg)>,
}
impl RedundantMoveEliminator {
@@ -57,11 +55,7 @@ impl RedundantMoveEliminator {
self.clear_alloc(to);
self.allocs
.insert(to, RedundantMoveState::Orig(to_vreg.unwrap()));
return RedundantMoveAction {
elide: true,
#[cfg(feature = "checker")]
def_alloc: Some((to, to_vreg.unwrap())),
};
return RedundantMoveAction { elide: true };
}
let src_vreg = match from_state {
@@ -86,13 +80,6 @@ impl RedundantMoveEliminator {
};
trace!(" -> elide {}", elide);
let def_alloc = if dst_vreg != existing_dst_vreg && dst_vreg.is_some() {
Some((to, dst_vreg.unwrap()))
} else {
None
};
trace!(" -> def_alloc {:?}", def_alloc);
// Invalidate all existing copies of `to` if `to` actually changed value.
if !elide {
self.clear_alloc(to);
@@ -113,11 +100,7 @@ impl RedundantMoveEliminator {
.push(to);
}
RedundantMoveAction {
elide,
#[cfg(feature = "checker")]
def_alloc,
}
RedundantMoveAction { elide }
}
pub fn clear(&mut self) {

View File

@@ -1119,13 +1119,6 @@ pub enum Edit {
/// are the same if the vreg changes; this allows proper metadata
/// tracking even when moves are elided.
Move { from: Allocation, to: Allocation },
/// Define a particular Allocation to contain a particular VReg. Useful
/// for the checker.
///
/// `DefAlloc` edits are only emitted when the `"checker"` Cargo feature is
/// enabled.
DefAlloc { alloc: Allocation, vreg: VReg },
}
/// Wrapper around either an original instruction or an inserted edit.