Files
wasmtime/crates/cranelift/src/obj.rs
Alex Crichton f0278c5db7 Implement canon lower of a canon lift function in the same component (#4347)
* Implement `canon lower` of a `canon lift` function in the same component

This commit implements the "degenerate" logic for implementing a
function within a component that is lifted and then immediately lowered
again. In this situation the lowered function will immediately generate
a trap and doesn't need to implement anything else.

The implementation in this commit is somewhat heavyweight but I think is
probably justified moreso in future additions to the component model
rather than what exactly is here right now. It's not expected that this
"always trap" functionality will really be used all that often since it
would generally mean a buggy component, but the functionality plumbed
through here is hopefully going to be useful for implementing
component-to-component adapter trampolines.

Specifically this commit implements a strategy where the `canon.lower`'d
function is generated by Cranelift and simply has a single trap
instruction when called, doing nothing else. The main complexity comes
from juggling around all the data associated with these functions,
primarily plumbing through the traps into the `ModuleRegistry` to
ensure that the global `is_wasm_trap_pc` function returns `true` and at
runtime when we lookup information about the trap it's all readily
available (e.g. translating the trapping pc to a `TrapCode`).

* Fix non-component build

* Fix some offset calculations

* Only create one "always trap" per signature

Use an internal map to deduplicate during compilation.
2022-06-29 16:35:37 +00:00

513 lines
22 KiB
Rust

//! Object file builder.
//!
//! Creates ELF image based on `Compilation` information. The ELF contains
//! functions and trampolines in the ".text" section. It also contains all
//! relocation records for the linking stage. If DWARF sections exist, their
//! content will be written as well.
//!
//! The object file has symbols for each function and trampoline, as well as
//! symbols that refer to libcalls.
//!
//! The function symbol names have format "_wasm_function_N", where N is
//! `FuncIndex`. The defined wasm function symbols refer to a JIT compiled
//! function body, the imported wasm function do not. The trampolines symbol
//! names have format "_trampoline_N", where N is `SignatureIndex`.
use crate::{CompiledFunction, RelocationTarget};
use anyhow::Result;
use cranelift_codegen::isa::{
unwind::{systemv, UnwindInfo},
TargetIsa,
};
use cranelift_codegen::TextSectionBuilder;
use gimli::write::{Address, EhFrame, EndianVec, FrameTable, Writer};
use gimli::RunTimeEndian;
use object::write::{Object, SectionId, StandardSegment, Symbol, SymbolId, SymbolSection};
use object::{Architecture, SectionKind, SymbolFlags, SymbolKind, SymbolScope};
use std::convert::TryFrom;
use std::ops::Range;
use wasmtime_environ::obj;
use wasmtime_environ::{DefinedFuncIndex, Module, PrimaryMap, SignatureIndex, Trampoline};
const TEXT_SECTION_NAME: &[u8] = b".text";
/// A helper structure used to assemble the final text section of an exectuable,
/// plus unwinding information and other related details.
///
/// This builder relies on Cranelift-specific internals but assembles into a
/// generic `Object` which will get further appended to in a compiler-agnostic
/// fashion later.
pub struct ModuleTextBuilder<'a> {
/// The target that we're compiling for, used to query target-specific
/// information as necessary.
isa: &'a dyn TargetIsa,
/// The object file that we're generating code into.
obj: &'a mut Object<'static>,
/// The WebAssembly module we're generating code for.
module: &'a Module,
text_section: SectionId,
unwind_info: UnwindInfoBuilder<'a>,
/// The corresponding symbol for each function, inserted as they're defined.
///
/// If an index isn't here yet then it hasn't been defined yet.
func_symbols: PrimaryMap<DefinedFuncIndex, SymbolId>,
/// In-progress text section that we're using cranelift's `MachBuffer` to
/// build to resolve relocations (calls) between functions.
text: Box<dyn TextSectionBuilder>,
}
impl<'a> ModuleTextBuilder<'a> {
pub fn new(obj: &'a mut Object<'static>, module: &'a Module, isa: &'a dyn TargetIsa) -> Self {
// Entire code (functions and trampolines) will be placed
// in the ".text" section.
let text_section = obj.add_section(
obj.segment_name(StandardSegment::Text).to_vec(),
TEXT_SECTION_NAME.to_vec(),
SectionKind::Text,
);
let num_defined = module.functions.len() - module.num_imported_funcs;
Self {
isa,
obj,
module,
text_section,
func_symbols: PrimaryMap::with_capacity(num_defined),
unwind_info: Default::default(),
text: isa.text_section_builder(num_defined as u32),
}
}
/// Appends the `func` specified named `name` to this object.
///
/// Returns the symbol associated with the function as well as the range
/// that the function resides within the text section.
pub fn append_func(
&mut self,
labeled: bool,
name: Vec<u8>,
func: &'a CompiledFunction,
) -> (SymbolId, Range<u64>) {
let body_len = func.body.len() as u64;
let off = self.text.append(labeled, &func.body, None);
let symbol_id = self.obj.add_symbol(Symbol {
name,
value: off,
size: body_len,
kind: SymbolKind::Text,
scope: SymbolScope::Compilation,
weak: false,
section: SymbolSection::Section(self.text_section),
flags: SymbolFlags::None,
});
if let Some(info) = &func.unwind_info {
self.unwind_info.push(off, body_len, info);
}
for r in func.relocations.iter() {
match r.reloc_target {
// Relocations against user-defined functions means that this is
// a relocation against a module-local function, typically a
// call between functions. The `text` field is given priority to
// resolve this relocation before we actually emit an object
// file, but if it can't handle it then we pass through the
// relocation.
RelocationTarget::UserFunc(index) => {
let defined_index = self.module.defined_func_index(index).unwrap();
if self.text.resolve_reloc(
off + u64::from(r.offset),
r.reloc,
r.addend,
defined_index.as_u32(),
) {
continue;
}
// At this time it's expected that all relocations are
// handled by `text.resolve_reloc`, and anything that isn't
// handled is a bug in `text.resolve_reloc` or something
// transitively there. If truly necessary, though, then this
// loop could also be updated to forward the relocation to
// the final object file as well.
panic!(
"unresolved relocation could not be procesed against \
{index:?}: {r:?}"
);
}
// At this time it's not expected that any libcall relocations
// are generated. Ideally we don't want relocations against
// libcalls anyway as libcalls should go through indirect
// `VMContext` tables to avoid needing to apply relocations at
// module-load time as well.
RelocationTarget::LibCall(call) => {
unimplemented!("cannot generate relocation against libcall {call:?}");
}
};
}
(symbol_id, off..off + body_len)
}
/// Appends a function to this object file.
///
/// This is expected to be called in-order for ascending `index` values.
pub fn func(&mut self, index: DefinedFuncIndex, func: &'a CompiledFunction) -> Range<u64> {
let name = obj::func_symbol_name(self.module.func_index(index));
let (symbol_id, range) = self.append_func(true, name.into_bytes(), func);
assert_eq!(self.func_symbols.push(symbol_id), index);
range
}
pub fn trampoline(&mut self, sig: SignatureIndex, func: &'a CompiledFunction) -> Trampoline {
let name = obj::trampoline_symbol_name(sig);
let range = self.named_func(&name, func);
Trampoline {
signature: sig,
start: range.start,
length: u32::try_from(range.end - range.start).unwrap(),
}
}
pub fn named_func(&mut self, name: &str, func: &'a CompiledFunction) -> Range<u64> {
let (_, range) = self.append_func(false, name.as_bytes().to_vec(), func);
range
}
/// Forces "veneers" to be used for inter-function calls in the text
/// section which means that in-bounds optimized addresses are never used.
///
/// This is only useful for debugging cranelift itself and typically this
/// option is disabled.
pub fn force_veneers(&mut self) {
self.text.force_veneers();
}
/// Appends the specified amount of bytes of padding into the text section.
///
/// This is only useful when fuzzing and/or debugging cranelift itself and
/// for production scenarios `padding` is 0 and this function does nothing.
pub fn append_padding(&mut self, padding: usize) {
if padding == 0 {
return;
}
self.text.append(false, &vec![0; padding], Some(1));
}
/// Indicates that the text section has been written completely and this
/// will finish appending it to the original object.
///
/// Note that this will also write out the unwind information sections if
/// necessary.
pub fn finish(mut self) -> Result<PrimaryMap<DefinedFuncIndex, SymbolId>> {
// Finish up the text section now that we're done adding functions.
let text = self.text.finish();
self.obj
.section_mut(self.text_section)
.set_data(text, self.isa.code_section_alignment());
// Append the unwind information for all our functions, if necessary.
self.unwind_info
.append_section(self.isa, self.obj, self.text_section);
Ok(self.func_symbols)
}
}
/// Builder used to create unwind information for a set of functions added to a
/// text section.
#[derive(Default)]
struct UnwindInfoBuilder<'a> {
windows_xdata: Vec<u8>,
windows_pdata: Vec<RUNTIME_FUNCTION>,
systemv_unwind_info: Vec<(u64, &'a systemv::UnwindInfo)>,
}
// This is a mirror of `RUNTIME_FUNCTION` in the Windows API, but defined here
// to ensure everything is always `u32` and to have it available on all
// platforms. Note that all of these specifiers here are relative to a "base
// address" which we define as the base of where the text section is eventually
// loaded.
#[allow(non_camel_case_types)]
struct RUNTIME_FUNCTION {
begin: u32,
end: u32,
unwind_address: u32,
}
impl<'a> UnwindInfoBuilder<'a> {
/// Pushes the unwind information for a function into this builder.
///
/// The function being described must be located at `function_offset` within
/// the text section itself, and the function's size is specified by
/// `function_len`.
///
/// The `info` should come from Cranelift. and is handled here depending on
/// its flavor.
fn push(&mut self, function_offset: u64, function_len: u64, info: &'a UnwindInfo) {
match info {
// Windows unwind information is stored in two locations:
//
// * First is the actual unwinding information which is stored
// in the `.xdata` section. This is where `info`'s emitted
// information will go into.
// * Second are pointers to connect all this unwind information,
// stored in the `.pdata` section. The `.pdata` section is an
// array of `RUNTIME_FUNCTION` structures.
//
// Due to how these will be loaded at runtime the `.pdata` isn't
// actually assembled byte-wise here. Instead that's deferred to
// happen later during `write_windows_unwind_info` which will apply
// a further offset to `unwind_address`.
UnwindInfo::WindowsX64(info) => {
let unwind_size = info.emit_size();
let mut unwind_info = vec![0; unwind_size];
info.emit(&mut unwind_info);
// `.xdata` entries are always 4-byte aligned
//
// FIXME: in theory we could "intern" the `unwind_info` value
// here within the `.xdata` section. Most of our unwind
// information for functions is probably pretty similar in which
// case the `.xdata` could be quite small and `.pdata` could
// have multiple functions point to the same unwinding
// information.
while self.windows_xdata.len() % 4 != 0 {
self.windows_xdata.push(0x00);
}
let unwind_address = self.windows_xdata.len();
self.windows_xdata.extend_from_slice(&unwind_info);
// Record a `RUNTIME_FUNCTION` which this will point to.
self.windows_pdata.push(RUNTIME_FUNCTION {
begin: u32::try_from(function_offset).unwrap(),
end: u32::try_from(function_offset + function_len).unwrap(),
unwind_address: u32::try_from(unwind_address).unwrap(),
});
}
// System-V is different enough that we just record the unwinding
// information to get processed at a later time.
UnwindInfo::SystemV(info) => {
self.systemv_unwind_info.push((function_offset, info));
}
_ => panic!("some unwind info isn't handled here"),
}
}
/// Appends the unwind information section, if any, to the `obj` specified.
///
/// This function must be called immediately after the text section was
/// added to a builder. The unwind information section must trail the text
/// section immediately.
///
/// The `text_section`'s section identifier is passed into this function.
fn append_section(&self, isa: &dyn TargetIsa, obj: &mut Object<'_>, text_section: SectionId) {
// This write will align the text section to a page boundary and then
// return the offset at that point. This gives us the full size of the
// text section at that point, after alignment.
let text_section_size =
obj.append_section_data(text_section, &[], isa.code_section_alignment());
if self.windows_xdata.len() > 0 {
assert!(self.systemv_unwind_info.len() == 0);
// The `.xdata` section must come first to be just-after the `.text`
// section for the reasons documented in `write_windows_unwind_info`
// below.
let segment = obj.segment_name(StandardSegment::Data).to_vec();
let xdata_id = obj.add_section(segment, b".xdata".to_vec(), SectionKind::ReadOnlyData);
let segment = obj.segment_name(StandardSegment::Data).to_vec();
let pdata_id = obj.add_section(segment, b".pdata".to_vec(), SectionKind::ReadOnlyData);
self.write_windows_unwind_info(obj, xdata_id, pdata_id, text_section_size);
}
if self.systemv_unwind_info.len() > 0 {
let segment = obj.segment_name(StandardSegment::Data).to_vec();
let section_id =
obj.add_section(segment, b".eh_frame".to_vec(), SectionKind::ReadOnlyData);
self.write_systemv_unwind_info(isa, obj, section_id, text_section_size)
}
}
/// This function appends a nonstandard section to the object which is only
/// used during `CodeMemory::publish`.
///
/// This custom section effectively stores a `[RUNTIME_FUNCTION; N]` into
/// the object file itself. This way registration of unwind info can simply
/// pass this slice to the OS itself and there's no need to recalculate
/// anything on the other end of loading a module from a precompiled object.
///
/// Support for reading this is in `crates/jit/src/unwind/winx64.rs`.
fn write_windows_unwind_info(
&self,
obj: &mut Object<'_>,
xdata_id: SectionId,
pdata_id: SectionId,
text_section_size: u64,
) {
// Currently the binary format supported here only supports
// little-endian for x86_64, or at least that's all where it's tested.
// This may need updates for other platforms.
assert_eq!(obj.architecture(), Architecture::X86_64);
// Append the `.xdata` section, or the actual unwinding information
// codes and such which were built as we found unwind information for
// functions.
obj.append_section_data(xdata_id, &self.windows_xdata, 4);
// Next append the `.pdata` section, or the array of `RUNTIME_FUNCTION`
// structures stored in the binary.
//
// This memory will be passed at runtime to `RtlAddFunctionTable` which
// takes a "base address" and the entries within `RUNTIME_FUNCTION` are
// all relative to this base address. The base address we pass is the
// address of the text section itself so all the pointers here must be
// text-section-relative. The `begin` and `end` fields for the function
// it describes are already text-section-relative, but the
// `unwind_address` field needs to be updated here since the value
// stored right now is `xdata`-section-relative. We know that the
// `xdata` section follows the `.text` section so the
// `text_section_size` is added in to calculate the final
// `.text`-section-relative address of the unwind information.
let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 3 * 4);
for info in self.windows_pdata.iter() {
pdata.extend_from_slice(&info.begin.to_le_bytes());
pdata.extend_from_slice(&info.end.to_le_bytes());
let address = text_section_size + u64::from(info.unwind_address);
let address = u32::try_from(address).unwrap();
pdata.extend_from_slice(&address.to_le_bytes());
}
obj.append_section_data(pdata_id, &pdata, 4);
}
/// This function appends a nonstandard section to the object which is only
/// used during `CodeMemory::publish`.
///
/// This will generate a `.eh_frame` section, but not one that can be
/// naively loaded. The goal of this section is that we can create the
/// section once here and never again does it need to change. To describe
/// dynamically loaded functions though each individual FDE needs to talk
/// about the function's absolute address that it's referencing. Naturally
/// we don't actually know the function's absolute address when we're
/// creating an object here.
///
/// To solve this problem the FDE address encoding mode is set to
/// `DW_EH_PE_pcrel`. This means that the actual effective address that the
/// FDE describes is a relative to the address of the FDE itself. By
/// leveraging this relative-ness we can assume that the relative distance
/// between the FDE and the function it describes is constant, which should
/// allow us to generate an FDE ahead-of-time here.
///
/// For now this assumes that all the code of functions will start at a
/// page-aligned address when loaded into memory. The eh_frame encoded here
/// then assumes that the text section is itself page aligned to its size
/// and the eh_frame will follow just after the text section. This means
/// that the relative offsets we're using here is the FDE going backwards
/// into the text section itself.
///
/// Note that the library we're using to create the FDEs, `gimli`, doesn't
/// actually encode addresses relative to the FDE itself. Instead the
/// addresses are encoded relative to the start of the `.eh_frame` section.
/// This makes it much easier for us where we provide the relative offset
/// from the start of `.eh_frame` to the function in the text section, which
/// given our layout basically means the offset of the function in the text
/// section from the end of the text section.
///
/// A final note is that the reason we page-align the text section's size is
/// so the .eh_frame lives on a separate page from the text section itself.
/// This allows `.eh_frame` to have different virtual memory permissions,
/// such as being purely read-only instead of read/execute like the code
/// bits.
fn write_systemv_unwind_info(
&self,
isa: &dyn TargetIsa,
obj: &mut Object<'_>,
section_id: SectionId,
text_section_size: u64,
) {
let mut cie = isa
.create_systemv_cie()
.expect("must be able to create a CIE for system-v unwind info");
let mut table = FrameTable::default();
cie.fde_address_encoding = gimli::constants::DW_EH_PE_pcrel;
let cie_id = table.add_cie(cie);
for (text_section_off, unwind_info) in self.systemv_unwind_info.iter() {
let backwards_off = text_section_size - text_section_off;
let actual_offset = -i64::try_from(backwards_off).unwrap();
// Note that gimli wants an unsigned 64-bit integer here, but
// unwinders just use this constant for a relative addition with the
// address of the FDE, which means that the sign doesn't actually
// matter.
let fde = unwind_info.to_fde(Address::Constant(actual_offset as u64));
table.add_fde(cie_id, fde);
}
let endian = match isa.triple().endianness().unwrap() {
target_lexicon::Endianness::Little => RunTimeEndian::Little,
target_lexicon::Endianness::Big => RunTimeEndian::Big,
};
let mut eh_frame = EhFrame(MyVec(EndianVec::new(endian)));
table.write_eh_frame(&mut eh_frame).unwrap();
// Some unwinding implementations expect a terminating "empty" length so
// a 0 is written at the end of the table for those implementations.
let mut endian_vec = (eh_frame.0).0;
endian_vec.write_u32(0).unwrap();
obj.append_section_data(section_id, endian_vec.slice(), 1);
use gimli::constants;
use gimli::write::Error;
struct MyVec(EndianVec<RunTimeEndian>);
impl Writer for MyVec {
type Endian = RunTimeEndian;
fn endian(&self) -> RunTimeEndian {
self.0.endian()
}
fn len(&self) -> usize {
self.0.len()
}
fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
self.0.write(buf)
}
fn write_at(&mut self, pos: usize, buf: &[u8]) -> Result<(), Error> {
self.0.write_at(pos, buf)
}
// FIXME(gimli-rs/gimli#576) this is the definition we want for
// `write_eh_pointer` but the default implementation, at the time
// of this writing, uses `offset - val` instead of `val - offset`.
// A PR has been merged to fix this but until that's published we
// can't use it.
fn write_eh_pointer(
&mut self,
address: Address,
eh_pe: constants::DwEhPe,
size: u8,
) -> Result<(), Error> {
let val = match address {
Address::Constant(val) => val,
Address::Symbol { .. } => unreachable!(),
};
assert_eq!(eh_pe.application(), constants::DW_EH_PE_pcrel);
let offset = self.len() as u64;
let val = val.wrapping_sub(offset);
self.write_eh_pointer_data(val, eh_pe.format(), size)
}
}
}
}