Files
wasmtime/lib/cretonne/meta/isa/intel/recipes.py
Jakob Stoklund Olesen fb227cb389 Move Intel recipe_* bodies into intel/recipes.py.
Use a PUT_OP macro in the TailRecipe Python class to replace the code
snippet that emits the prefixes + opcode part of the instruction encoding.

Prepare for the addition of REX prefixes by giving the PUT_OP functions
a third argument representing the REX prefix. For the non-REX encodings,
verify that no REX bits wold be needed.
2017-07-11 11:05:27 -07:00

342 lines
11 KiB
Python

"""
Intel Encoding recipes.
"""
from __future__ import absolute_import
from cdsl.isa import EncRecipe
from cdsl.predicates import IsSignedInt, IsEqual
from base.formats import Unary, UnaryImm, Binary, BinaryImm, MultiAry
from base.formats import Call, IndirectCall, Store, Load
from .registers import GPR, ABCD
try:
from typing import Tuple, Dict # noqa
from cdsl.instructions import InstructionFormat # noqa
from cdsl.isa import ConstraintSeq, BranchRange, PredNode # noqa
except ImportError:
pass
# Opcode representation.
#
# Cretonne requires each recipe to have a single encoding size in bytes, and
# Intel opcodes are variable length, so we use separate recipes for different
# styles of opcodes and prefixes. The opcode format is indicated by the recipe
# name prefix:
OPCODE_PREFIX = {
# Prefix bytes Name mmpp
(): ('Op1', 0b0000),
(0x66,): ('Mp1', 0b0001),
(0xf3,): ('Mp1', 0b0010),
(0xf2,): ('Mp1', 0b0011),
(0x0f,): ('Op2', 0b0100),
(0x66, 0x0f): ('Mp2', 0b0101),
(0xf3, 0x0f): ('Mp2', 0b0110),
(0xf2, 0x0f): ('Mp2', 0b0111),
(0x0f, 0x38): ('Op3', 0b1000),
(0x66, 0x0f, 0x38): ('Mp3', 0b1001),
(0xf3, 0x0f, 0x38): ('Mp3', 0b1010),
(0xf2, 0x0f, 0x38): ('Mp3', 0b1011),
(0x0f, 0x3a): ('Op3', 0b1100),
(0x66, 0x0f, 0x3a): ('Mp3', 0b1101),
(0xf3, 0x0f, 0x3a): ('Mp3', 0b1110),
(0xf2, 0x0f, 0x3a): ('Mp3', 0b1111)
}
# The table above does not include the REX prefix which goes after the
# mandatory prefix. VEX/XOP and EVEX prefixes are not yet supported. Encodings
# using any of these prefixes are represented by separate recipes.
#
# The encoding bits are:
#
# 0-7: The opcode byte <op>.
# 8-9: pp, mandatory prefix:
# 00 none (Op*)
# 01 66 (Mp*)
# 10 F3 (Mp*)
# 11 F2 (Mp*)
# 10-11: mm, opcode map:
# 00 <op> (Op1/Mp1)
# 01 0F <op> (Op2/Mp2)
# 10 0F 38 <op> (Op3/Mp3)
# 11 0F 3A <op> (Op3/Mp3)
# 12-14 rrr, opcode bits for the ModR/M byte for certain opcodes.
# 15: REX.W bit (or VEX.W/E)
#
# There is some redundancy between bits 8-11 and the recipe names, but we have
# enough bits, and the pp+mm format is ready for supporting VEX prefixes.
def decode_ops(ops, rrr=0, w=0):
# type: (Tuple[int, ...], int, int) -> Tuple[str, int]
"""
Given a sequence of opcode bytes, compute the recipe name prefix and
encoding bits.
"""
assert rrr <= 0b111
assert w <= 1
name, mmpp = OPCODE_PREFIX[ops[:-1]]
op = ops[-1]
assert op <= 256
return (name, op | (mmpp << 8) | (rrr << 12) | (w << 15))
def replace_put_op(emit, prefix):
# type: (str, str) -> str
"""
Given a snippet of Rust code (or None), replace the `PUT_OP` macro with the
corresponding `put_*` function from the `binemit.rs` module.
"""
if emit is None:
return None
else:
return emit.replace('PUT_OP', 'put_' + prefix.lower())
class TailRecipe:
"""
Generate encoding recipes on demand.
Intel encodings are somewhat orthogonal with the opcode representation on
one side and the ModR/M, SIB and immediate fields on the other side.
A `TailRecipe` represents the part of an encoding that follow the opcode.
It is used to generate full encoding recipes on demand when combined with
an opcode.
The arguments are the same as for an `EncRecipe`, except for `size` which
does not include the size of the opcode.
The `emit` parameter contains Rust code to actually emit an encoding, like
`EncRecipe` does it. Additionally, the text `PUT_OP` is substituted with
the proper `put_*` function from the `intel/binemit.rs` module.
"""
def __init__(
self,
name, # type: str
format, # type: InstructionFormat
size, # type: int
ins, # type: ConstraintSeq
outs, # type: ConstraintSeq
branch_range=None, # type: BranchRange
instp=None, # type: PredNode
isap=None, # type: PredNode
emit=None # type: str
):
# type: (...) -> None
self.name = name
self.format = format
self.size = size
self.ins = ins
self.outs = outs
self.branch_range = branch_range
self.instp = instp
self.isap = isap
self.emit = emit
# Cached recipes, keyed by name prefix.
self.recipes = dict() # type: Dict[str, EncRecipe]
def __call__(self, *ops, **kwargs):
# type: (*int, **int) -> Tuple[EncRecipe, int]
"""
Create an encoding recipe and encoding bits for the opcode bytes in
`ops`.
"""
rrr = kwargs.get('rrr', 0)
w = kwargs.get('w', 0)
name, bits = decode_ops(ops, rrr, w)
if name not in self.recipes:
self.recipes[name] = EncRecipe(
name + self.name,
self.format,
len(ops) + self.size,
ins=self.ins,
outs=self.outs,
branch_range=self.branch_range,
instp=self.instp,
isap=self.isap,
emit=replace_put_op(self.emit, name))
return (self.recipes[name], bits)
# XX /r
rr = TailRecipe(
'rr', Binary, size=1, ins=(GPR, GPR), outs=0,
emit='''
PUT_OP(bits, rex2(in_reg0, in_reg1), sink);
modrm_rr(in_reg0, in_reg1, sink);
''')
# XX /r, but for a unary operator with separate input/output register, like
# copies.
ur = TailRecipe(
'ur', Unary, size=1, ins=GPR, outs=GPR,
emit='''
PUT_OP(bits, rex2(out_reg0, in_reg0), sink);
modrm_rr(out_reg0, in_reg0, sink);
''')
# XX /n with one arg in %rcx, for shifts.
rc = TailRecipe(
'rc', Binary, size=1, ins=(GPR, GPR.rcx), outs=0,
emit='''
PUT_OP(bits, rex1(in_reg0), sink);
modrm_r_bits(in_reg0, bits, sink);
''')
# XX /n ib with 8-bit immediate sign-extended.
rib = TailRecipe(
'rib', BinaryImm, size=2, ins=GPR, outs=0,
instp=IsSignedInt(BinaryImm.imm, 8),
emit='''
PUT_OP(bits, rex1(in_reg0), sink);
modrm_r_bits(in_reg0, bits, sink);
let imm: i64 = imm.into();
sink.put1(imm as u8);
''')
# XX /n id with 32-bit immediate sign-extended.
rid = TailRecipe(
'rid', BinaryImm, size=5, ins=GPR, outs=0,
instp=IsSignedInt(BinaryImm.imm, 32),
emit='''
PUT_OP(bits, rex1(in_reg0), sink);
modrm_r_bits(in_reg0, bits, sink);
let imm: i64 = imm.into();
sink.put4(imm as u32);
''')
# XX+rd id unary with 32-bit immediate.
uid = TailRecipe(
'uid', UnaryImm, size=4, ins=(), outs=GPR,
instp=IsSignedInt(UnaryImm.imm, 32),
emit='''
// The destination register is encoded in the low bits of the opcode.
// No ModR/M.
PUT_OP(bits | (out_reg0 & 7), rex1(out_reg0), sink);
let imm: i64 = imm.into();
sink.put4(imm as u32);
''')
#
# Store recipes.
#
# XX /r register-indirect store with no offset.
st = TailRecipe(
'st', Store, size=1, ins=(GPR, GPR), outs=(),
instp=IsEqual(Store.offset, 0),
emit='''
PUT_OP(bits, rex2(in_reg0, in_reg1), sink);
modrm_rm(in_reg1, in_reg0, sink);
''')
# XX /r register-indirect store with no offset.
# Only ABCD allowed for stored value. This is for byte stores.
st_abcd = TailRecipe(
'st_abcd', Store, size=1, ins=(ABCD, GPR), outs=(),
instp=IsEqual(Store.offset, 0),
emit='''
PUT_OP(bits, rex2(in_reg0, in_reg1), sink);
modrm_rm(in_reg1, in_reg0, sink);
''')
# XX /r register-indirect store with 8-bit offset.
stDisp8 = TailRecipe(
'stDisp8', Store, size=2, ins=(GPR, GPR), outs=(),
instp=IsSignedInt(Store.offset, 8),
emit='''
PUT_OP(bits, rex2(in_reg0, in_reg1), sink);
modrm_disp8(in_reg1, in_reg0, sink);
let offset: i32 = offset.into();
sink.put1(offset as u8);
''')
stDisp8_abcd = TailRecipe(
'stDisp8_abcd', Store, size=2, ins=(ABCD, GPR), outs=(),
instp=IsSignedInt(Store.offset, 8),
emit='''
PUT_OP(bits, rex2(in_reg0, in_reg1), sink);
modrm_disp8(in_reg1, in_reg0, sink);
let offset: i32 = offset.into();
sink.put1(offset as u8);
''')
# XX /r register-indirect store with 32-bit offset.
stDisp32 = TailRecipe(
'stDisp32', Store, size=5, ins=(GPR, GPR), outs=(),
emit='''
PUT_OP(bits, rex2(in_reg0, in_reg1), sink);
modrm_disp32(in_reg1, in_reg0, sink);
let offset: i32 = offset.into();
sink.put4(offset as u32);
''')
stDisp32_abcd = TailRecipe(
'stDisp32_abcd', Store, size=5, ins=(ABCD, GPR), outs=(),
emit='''
PUT_OP(bits, rex2(in_reg0, in_reg1), sink);
modrm_disp32(in_reg1, in_reg0, sink);
let offset: i32 = offset.into();
sink.put4(offset as u32);
''')
#
# Load recipes
#
# XX /r load with no offset.
ld = TailRecipe(
'ld', Load, size=1, ins=(GPR), outs=(GPR),
instp=IsEqual(Load.offset, 0),
emit='''
PUT_OP(bits, rex2(out_reg0, in_reg0), sink);
modrm_rm(in_reg0, out_reg0, sink);
''')
# XX /r load with 8-bit offset.
ldDisp8 = TailRecipe(
'ldDisp8', Load, size=2, ins=(GPR), outs=(GPR),
instp=IsSignedInt(Load.offset, 8),
emit='''
PUT_OP(bits, rex2(out_reg0, in_reg0), sink);
modrm_disp8(in_reg0, out_reg0, sink);
let offset: i32 = offset.into();
sink.put1(offset as u8);
''')
# XX /r load with 32-bit offset.
ldDisp32 = TailRecipe(
'ldDisp32', Load, size=5, ins=(GPR), outs=(GPR),
instp=IsSignedInt(Load.offset, 32),
emit='''
PUT_OP(bits, rex2(out_reg0, in_reg0), sink);
modrm_disp32(in_reg0, out_reg0, sink);
let offset: i32 = offset.into();
sink.put4(offset as u32);
''')
#
# Call/return
#
call_id = TailRecipe(
'call_id', Call, size=4, ins=(), outs=(),
emit='''
PUT_OP(bits, BASE_REX, sink);
sink.reloc_func(RelocKind::PCRel4.into(), func_ref);
sink.put4(0);
''')
call_r = TailRecipe(
'call_r', IndirectCall, size=1, ins=GPR, outs=(),
emit='''
PUT_OP(bits, rex1(in_reg0), sink);
modrm_r_bits(in_reg0, bits, sink);
''')
ret = TailRecipe(
'ret', MultiAry, size=0, ins=(), outs=(),
emit='''
PUT_OP(bits, BASE_REX, sink);
''')