Files
wasmtime/cranelift/peepmatic/crates/runtime/src/optimizer.rs
Nick Fitzgerald c015d69eb8 peepmatic: Do not use paths in linear IR
Rather than using paths from the root instruction to the instruction we are
matching against or checking if it is constant or whatever, use temporary
variables. When we successfully match an instruction's opcode, we simultaneously
define these temporaries for the instruction's operands. This is similar to how
open-coding these matches in Rust would use `match` expressions with pattern
matching to bind the operands to variables at the same time.

This saves about 1.8% of instructions retired when Peepmatic is enabled.
2020-10-13 11:03:48 -07:00

552 lines
23 KiB
Rust

//! An optimizer for a set of peephole optimizations.
use crate::instruction_set::InstructionSet;
use crate::linear::{bool_to_match_result, Action, Else, MatchOp, MatchResult};
use crate::optimizations::PeepholeOptimizations;
use crate::part::{Constant, Part};
use crate::r#type::{BitWidth, Type};
use crate::unquote::UnquoteOperator;
use peepmatic_automata::State;
use std::convert::TryFrom;
use std::fmt::{self, Debug};
use std::mem;
use std::num::NonZeroU32;
/// A peephole optimizer instance that can apply a set of peephole
/// optimizations to instructions.
///
/// These are created from a set of peephole optimizations with the
/// [`PeepholeOptimizations::optimizer`] method.
///
/// Reusing an instance when applying peephole optimizations to different
/// instruction sequences means that you reuse internal allocations that are
/// used to match left-hand sides and build up right-hand sides.
pub struct PeepholeOptimizer<'peep, 'ctx, TInstructionSet>
where
TInstructionSet: InstructionSet<'ctx>,
{
pub(crate) peep_opt: &'peep PeepholeOptimizations<TInstructionSet::Operator>,
pub(crate) instr_set: TInstructionSet,
pub(crate) left_hand_sides: Vec<Part<TInstructionSet::Instruction>>,
pub(crate) right_hand_sides: Vec<Part<TInstructionSet::Instruction>>,
pub(crate) actions: Vec<Action<TInstructionSet::Operator>>,
pub(crate) backtracking_states: Vec<(State, usize, usize)>,
}
impl<'peep, 'ctx, TInstructionSet> Debug for PeepholeOptimizer<'peep, 'ctx, TInstructionSet>
where
TInstructionSet: InstructionSet<'ctx>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let PeepholeOptimizer {
peep_opt,
instr_set: _,
left_hand_sides,
right_hand_sides,
actions,
backtracking_states,
} = self;
f.debug_struct("PeepholeOptimizer")
.field("peep_opt", peep_opt)
.field("instr_set", &"_")
.field("left_hand_sides", left_hand_sides)
.field("right_hand_sides", right_hand_sides)
.field("actions", actions)
.field("backtracking_states", backtracking_states)
.finish()
}
}
impl<'peep, 'ctx, TInstructionSet> PeepholeOptimizer<'peep, 'ctx, TInstructionSet>
where
TInstructionSet: InstructionSet<'ctx>,
{
fn eval_unquote_1(&self, operator: UnquoteOperator, a: Constant) -> Constant {
use Constant::*;
macro_rules! map_int {
( $c:expr , | $x:ident | $e:expr ) => {
match $c {
Int($x, w) => Int($e, w),
Bool(..) => panic!("not an integer"),
}
};
}
match operator {
UnquoteOperator::Log2 => map_int!(a, |x| x.trailing_zeros() as _),
UnquoteOperator::Neg => map_int!(a, |x| x.wrapping_neg()),
UnquoteOperator::Band
| UnquoteOperator::Bor
| UnquoteOperator::Bxor
| UnquoteOperator::Iadd
| UnquoteOperator::Imul
| UnquoteOperator::Isub => unreachable!("not a unary unquote operator: {:?}", operator),
}
}
fn eval_unquote_2(&self, operator: UnquoteOperator, a: Constant, b: Constant) -> Constant {
use Constant::*;
macro_rules! fold_ints {
( $c1:expr , $c2:expr , | $x:ident , $y:ident | $e:expr ) => {
match ($c1, $c2) {
(Int($x, w1), Int($y, w2)) if w1 == w2 => Int($e, w1),
_ => panic!("not two integers of the same width"),
}
};
}
match operator {
UnquoteOperator::Band => fold_ints!(a, b, |x, y| x & y),
UnquoteOperator::Bor => fold_ints!(a, b, |x, y| x | y),
UnquoteOperator::Bxor => fold_ints!(a, b, |x, y| x ^ y),
UnquoteOperator::Iadd => fold_ints!(a, b, |x, y| x.wrapping_add(y)),
UnquoteOperator::Imul => fold_ints!(a, b, |x, y| x.wrapping_mul(y)),
UnquoteOperator::Isub => fold_ints!(a, b, |x, y| x.wrapping_sub(y)),
UnquoteOperator::Log2 | UnquoteOperator::Neg => {
unreachable!("not a binary unquote operator: {:?}", operator)
}
}
}
fn eval_actions(
&mut self,
context: &mut TInstructionSet::Context,
root: TInstructionSet::Instruction,
) {
let mut actions = mem::replace(&mut self.actions, vec![]);
for action in actions.drain(..) {
log::trace!("Evaluating action: {:?}", action);
match action {
Action::GetLhs { lhs } => {
let lhs = self.left_hand_sides[lhs.0 as usize];
self.right_hand_sides.push(lhs);
}
Action::UnaryUnquote { operator, operand } => {
let operand = self.right_hand_sides[operand.0 as usize];
let operand = match operand {
Part::Instruction(i) => self
.instr_set
.instruction_to_constant(context, i)
.expect("cannot convert instruction to constant for unquote operand"),
Part::Constant(c) => c,
Part::ConditionCode(_) => {
panic!("cannot use a condition code as an unquote operand")
}
};
let result = self.eval_unquote_1(operator, operand);
self.right_hand_sides.push(result.into());
}
Action::BinaryUnquote { operator, operands } => {
let a = self.right_hand_sides[operands[0].0 as usize];
let a = match a {
Part::Instruction(i) => self
.instr_set
.instruction_to_constant(context, i)
.expect("cannot convert instruction to constant for unquote operand"),
Part::Constant(c) => c,
Part::ConditionCode(_) => {
panic!("cannot use a condition code as an unquote operand")
}
};
let b = self.right_hand_sides[operands[1].0 as usize];
let b = match b {
Part::Instruction(i) => self
.instr_set
.instruction_to_constant(context, i)
.expect("cannot convert instruction to constant for unquote operand"),
Part::Constant(c) => c,
Part::ConditionCode(_) => {
panic!("cannot use a condition code as an unquote operand")
}
};
let result = self.eval_unquote_2(operator, a, b);
self.right_hand_sides.push(result.into());
}
Action::MakeIntegerConst {
value,
mut bit_width,
} => {
let value = self.peep_opt.integers.lookup(value);
if bit_width.is_polymorphic() {
bit_width = BitWidth::try_from(
self.instr_set.instruction_result_bit_width(context, root),
)
.unwrap();
}
self.right_hand_sides
.push(Constant::Int(value, bit_width).into());
}
Action::MakeBooleanConst {
value,
mut bit_width,
} => {
if bit_width.is_polymorphic() {
bit_width = BitWidth::try_from(
self.instr_set.instruction_result_bit_width(context, root),
)
.unwrap();
}
self.right_hand_sides
.push(Constant::Bool(value, bit_width).into());
}
Action::MakeConditionCode { cc } => {
self.right_hand_sides.push(Part::ConditionCode(cc));
}
Action::MakeUnaryInst {
operator,
r#type:
Type {
kind,
mut bit_width,
},
operand,
} => {
if bit_width.is_polymorphic() {
bit_width = BitWidth::try_from(
self.instr_set.instruction_result_bit_width(context, root),
)
.unwrap();
}
let ty = Type { kind, bit_width };
let operand = self.right_hand_sides[operand.0 as usize];
let inst = self
.instr_set
.make_inst_1(context, root, operator, ty, operand);
self.right_hand_sides.push(Part::Instruction(inst));
}
Action::MakeBinaryInst {
operator,
r#type:
Type {
kind,
mut bit_width,
},
operands,
} => {
if bit_width.is_polymorphic() {
bit_width = BitWidth::try_from(
self.instr_set.instruction_result_bit_width(context, root),
)
.unwrap();
}
let ty = Type { kind, bit_width };
let a = self.right_hand_sides[operands[0].0 as usize];
let b = self.right_hand_sides[operands[1].0 as usize];
let inst = self
.instr_set
.make_inst_2(context, root, operator, ty, a, b);
self.right_hand_sides.push(Part::Instruction(inst));
}
Action::MakeTernaryInst {
operator,
r#type:
Type {
kind,
mut bit_width,
},
operands,
} => {
if bit_width.is_polymorphic() {
bit_width = BitWidth::try_from(
self.instr_set.instruction_result_bit_width(context, root),
)
.unwrap();
}
let ty = Type { kind, bit_width };
let a = self.right_hand_sides[operands[0].0 as usize];
let b = self.right_hand_sides[operands[1].0 as usize];
let c = self.right_hand_sides[operands[2].0 as usize];
let inst = self
.instr_set
.make_inst_3(context, root, operator, ty, a, b, c);
self.right_hand_sides.push(Part::Instruction(inst));
}
}
}
// Reuse the heap elements allocation.
self.actions = actions;
}
fn eval_match_op(
&mut self,
context: &mut TInstructionSet::Context,
root: TInstructionSet::Instruction,
match_op: MatchOp,
) -> MatchResult {
use crate::linear::MatchOp::*;
log::trace!("Evaluating match operation: {:?}", match_op);
let result: MatchResult = (|| match match_op {
Opcode(id) => {
let part = self.left_hand_sides[id.0 as usize];
let inst = part.as_instruction().ok_or(Else)?;
let op = self
.instr_set
.operator(context, inst, &mut self.left_hand_sides)
.ok_or(Else)?;
Ok(op.into())
}
IsConst(id) => {
let part = self.left_hand_sides[id.0 as usize];
let is_const = match part {
Part::Instruction(i) => {
self.instr_set.instruction_to_constant(context, i).is_some()
}
Part::ConditionCode(_) | Part::Constant(_) => true,
};
bool_to_match_result(is_const)
}
IsPowerOfTwo(id) => {
let part = self.left_hand_sides[id.0 as usize];
match part {
Part::Constant(c) => {
let is_pow2 = c.as_int().unwrap().is_power_of_two();
bool_to_match_result(is_pow2)
}
Part::Instruction(i) => {
let c = self
.instr_set
.instruction_to_constant(context, i)
.ok_or(Else)?;
let is_pow2 = c.as_int().unwrap().is_power_of_two();
bool_to_match_result(is_pow2)
}
Part::ConditionCode(_) => unreachable!("IsPowerOfTwo on a condition code"),
}
}
BitWidth(id) => {
let part = self.left_hand_sides[id.0 as usize];
let bit_width = match part {
Part::Instruction(i) => self.instr_set.instruction_result_bit_width(context, i),
Part::Constant(Constant::Int(_, w)) | Part::Constant(Constant::Bool(_, w)) => {
w.fixed_width().unwrap_or_else(|| {
self.instr_set.instruction_result_bit_width(context, root)
})
}
Part::ConditionCode(_) => panic!("BitWidth on condition code"),
};
debug_assert!(
bit_width != 0,
"`InstructionSet` implementors must uphold the contract that \
`instruction_result_bit_width` returns one of 1, 8, 16, 32, 64, or 128"
);
Ok(unsafe { NonZeroU32::new_unchecked(bit_width as u32) })
}
FitsInNativeWord(id) => {
let native_word_size = self.instr_set.native_word_size_in_bits(context);
debug_assert!(native_word_size.is_power_of_two());
let part = self.left_hand_sides[id.0 as usize];
let fits = match part {
Part::Instruction(i) => {
let size = self.instr_set.instruction_result_bit_width(context, i);
size <= native_word_size
}
Part::Constant(c) => {
let root_width = self.instr_set.instruction_result_bit_width(context, root);
let size = c.bit_width(root_width);
size <= native_word_size
}
Part::ConditionCode(_) => panic!("FitsInNativeWord on condition code"),
};
bool_to_match_result(fits)
}
Eq(a, b) => {
let part_a = self.left_hand_sides[a.0 as usize];
let part_b = self.left_hand_sides[b.0 as usize];
let eq = match (part_a, part_b) {
(Part::Instruction(inst), Part::Constant(c1))
| (Part::Constant(c1), Part::Instruction(inst)) => {
match self.instr_set.instruction_to_constant(context, inst) {
Some(c2) => c1 == c2,
None => false,
}
}
(a, b) => a == b,
};
bool_to_match_result(eq)
}
IntegerValue(id) => {
let part = self.left_hand_sides[id.0 as usize];
match part {
Part::Constant(c) => {
let x = c.as_int().ok_or(Else)?;
let id = self.peep_opt.integers.already_interned(x).ok_or(Else)?;
Ok(id.into())
}
Part::Instruction(i) => {
let c = self
.instr_set
.instruction_to_constant(context, i)
.ok_or(Else)?;
let x = c.as_int().ok_or(Else)?;
let id = self.peep_opt.integers.already_interned(x).ok_or(Else)?;
Ok(id.into())
}
Part::ConditionCode(_) => unreachable!("IntegerValue on condition code"),
}
}
BooleanValue(id) => {
let part = self.left_hand_sides[id.0 as usize];
match part {
Part::Constant(c) => {
let b = c.as_bool().ok_or(Else)?;
bool_to_match_result(b)
}
Part::Instruction(i) => {
let c = self
.instr_set
.instruction_to_constant(context, i)
.ok_or(Else)?;
let b = c.as_bool().ok_or(Else)?;
bool_to_match_result(b)
}
Part::ConditionCode(_) => unreachable!("IntegerValue on condition code"),
}
}
ConditionCode(id) => {
let part = self.left_hand_sides[id.0 as usize];
let cc = part.as_condition_code().ok_or(Else)?;
let cc = cc as u32;
debug_assert!(cc != 0);
Ok(unsafe { NonZeroU32::new_unchecked(cc) })
}
MatchOp::Nop => Err(Else),
})();
log::trace!("Evaluated match operation: {:?} = {:?}", match_op, result);
result
}
/// Attempt to apply a single peephole optimization to the given root
/// instruction.
///
/// If an optimization is applied, then the `root` is replaced with the
/// optimization's right-hand side, and the root of the right-hand side is
/// returned as `Some`.
///
/// If no optimization's left-hand side matches `root`, then `root` is left
/// untouched and `None` is returned.
pub fn apply_one(
&mut self,
context: &mut TInstructionSet::Context,
root: TInstructionSet::Instruction,
) -> Option<TInstructionSet::Instruction> {
log::trace!("PeepholeOptimizer::apply_one");
self.backtracking_states.clear();
self.actions.clear();
self.right_hand_sides.clear();
self.left_hand_sides.clear();
// `LhsId(0)` is always the root.
self.left_hand_sides.push(Part::Instruction(root));
let mut r#final = None;
let mut query = self.peep_opt.automata.query();
loop {
log::trace!("Current state: {:?}", query.current_state());
log::trace!(
"self.left_hand_sides = {:#?}",
self.left_hand_sides.iter().enumerate().collect::<Vec<_>>()
);
if query.is_in_final_state() {
// If we're in a final state (which means an optimization is
// applicable) then record that fact, but keep going. We don't
// want to stop yet, because we might discover another,
// more-specific optimization that is also applicable if we keep
// going. And we always want to apply the most specific
// optimization that matches.
log::trace!("Found a match at state {:?}", query.current_state());
r#final = Some((query.current_state(), self.actions.len()));
}
// Anything following a `Else` transition doesn't care about the
// result of this match operation, so if we partially follow the
// current non-`Else` path, but don't ultimately find a matching
// optimization, we want to be able to backtrack to this state and
// then try taking the `Else` transition.
if query.has_transition_on(&Err(Else)) {
self.backtracking_states.push((
query.current_state(),
self.actions.len(),
self.left_hand_sides.len(),
));
}
let match_op = match query.current_state_data() {
None => break,
Some(op) => op,
};
let input = self.eval_match_op(context, root, *match_op);
let actions = if let Some(actions) = query.next(&input) {
actions
} else if r#final.is_some() {
break;
} else if let Some((state, actions_len, lhs_len)) = self.backtracking_states.pop() {
query.go_to_state(state);
self.actions.truncate(actions_len);
self.left_hand_sides.truncate(lhs_len);
query
.next(&Err(Else))
.expect("backtracking states always have `Else` transitions")
} else {
break;
};
self.actions.extend(actions.iter().copied());
}
// If `final` is none, then we didn't encounter any final states, so
// there are no applicable optimizations.
let (final_state, actions_len) = match r#final {
Some(f) => f,
None => {
log::trace!("No optimizations matched");
return None;
}
};
// Go to the last final state we saw, reset the LHS and RHS to how
// they were at the time we saw the final state, and process the
// final actions.
self.actions.truncate(actions_len);
query.go_to_state(final_state);
let final_actions = query.finish().expect("should be in a final state");
self.actions.extend(final_actions.iter().copied());
self.eval_actions(context, root);
// And finally, the root of the RHS for this optimization is the
// last entry in `self.right_hand_sides`, so replace the old root
// instruction with this one!
let result = self.right_hand_sides.pop().unwrap();
let new_root = self.instr_set.replace_instruction(context, root, result);
Some(new_root)
}
/// Keep applying peephole optimizations to the given instruction until none
/// can be applied anymore.
pub fn apply_all(
&mut self,
context: &mut TInstructionSet::Context,
mut inst: TInstructionSet::Instruction,
) {
loop {
if let Some(new_inst) = self.apply_one(context, inst) {
inst = new_inst;
} else {
break;
}
}
}
}