Files
wasmtime/examples/interrupt.c
Alex Crichton c22033bf93 Delete historical interruptable support in Wasmtime (#3925)
* Delete historical interruptable support in Wasmtime

This commit removes the `Config::interruptable` configuration along with
the `InterruptHandle` type from the `wasmtime` crate. The original
support for adding interruption to WebAssembly was added pretty early on
in the history of Wasmtime when there was no other method to prevent an
infinite loop from the host. Nowadays, however, there are alternative
methods for interruption such as fuel or epoch-based interruption.

One of the major downsides of `Config::interruptable` is that even when
it's not enabled it forces an atomic swap to happen when entering
WebAssembly code. This technically could be a non-atomic swap if the
configuration option isn't enabled but that produces even more branch-y
code on entry into WebAssembly which is already something we try to
optimize. Calling into WebAssembly is on the order of a dozens of
nanoseconds at this time and an atomic swap, even uncontended, can add
up to 5ns on some platforms.

The main goal of this PR is to remove this atomic swap on entry into
WebAssembly. This is done by removing the `Config::interruptable` field
entirely, moving all existing consumers to epochs instead which are
suitable for the same purposes. This means that the stack overflow check
is no longer entangled with the interruption check and perhaps one day
we could continue to optimize that further as well.

Some consequences of this change are:

* Epochs are now the only method of remote-thread interruption.
* There are no more Wasmtime traps that produces the `Interrupted` trap
  code, although we may wish to move future traps to this so I left it
  in place.
* The C API support for interrupt handles was also removed and bindings
  for epoch methods were added.
* Function-entry checks for interruption are a tiny bit less efficient
  since one check is performed for the stack limit and a second is
  performed for the epoch as opposed to the `Config::interruptable`
  style of bundling the stack limit and the interrupt check in one. It's
  expected though that this is likely to not really be measurable.
* The old `VMInterrupts` structure is renamed to `VMRuntimeLimits`.
2022-03-14 15:25:11 -05:00

136 lines
4.1 KiB
C

/*
Example of instantiating of the WebAssembly module and invoking its exported
function.
You can compile and run this example on Linux with:
cargo build --release -p wasmtime-c-api
cc examples/interrupt.c \
-I crates/c-api/include \
-I crates/c-api/wasm-c-api/include \
target/release/libwasmtime.a \
-lpthread -ldl -lm \
-o interrupt
./interrupt
Note that on Windows and macOS the command will be similar, but you'll need
to tweak the `-lpthread` and such annotations as well as the name of the
`libwasmtime.a` file on Windows.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <wasm.h>
#include <wasmtime.h>
#ifdef _WIN32
static void spawn_interrupt(wasm_engine_t *engine) {
wasmtime_engine_increment_epoch(engine);
}
#else
#include <pthread.h>
#include <time.h>
static void* helper(void *_engine) {
wasm_engine_t *engine = _engine;
struct timespec sleep_dur;
sleep_dur.tv_sec = 1;
sleep_dur.tv_nsec = 0;
nanosleep(&sleep_dur, NULL);
printf("Sending an interrupt\n");
wasmtime_engine_increment_epoch(engine);
return 0;
}
static void spawn_interrupt(wasm_engine_t *engine) {
pthread_t child;
int rc = pthread_create(&child, NULL, helper, engine);
assert(rc == 0);
}
#endif
static void exit_with_error(const char *message, wasmtime_error_t *error, wasm_trap_t *trap);
int main() {
// Create a `wasm_store_t` with interrupts enabled
wasm_config_t *config = wasm_config_new();
assert(config != NULL);
wasmtime_config_epoch_interruption_set(config, true);
wasm_engine_t *engine = wasm_engine_new_with_config(config);
assert(engine != NULL);
wasmtime_store_t *store = wasmtime_store_new(engine, NULL, NULL);
assert(store != NULL);
wasmtime_context_t *context = wasmtime_store_context(store);
// Configure the epoch deadline after which WebAssembly code will trap.
wasmtime_context_set_epoch_deadline(context, 1);
// Read our input file, which in this case is a wasm text file.
FILE* file = fopen("examples/interrupt.wat", "r");
assert(file != NULL);
fseek(file, 0L, SEEK_END);
size_t file_size = ftell(file);
fseek(file, 0L, SEEK_SET);
wasm_byte_vec_t wat;
wasm_byte_vec_new_uninitialized(&wat, file_size);
assert(fread(wat.data, file_size, 1, file) == 1);
fclose(file);
// Parse the wat into the binary wasm format
wasm_byte_vec_t wasm;
wasmtime_error_t *error = wasmtime_wat2wasm(wat.data, wat.size, &wasm);
if (error != NULL)
exit_with_error("failed to parse wat", error, NULL);
wasm_byte_vec_delete(&wat);
// Now that we've got our binary webassembly we can compile our module.
wasmtime_module_t *module = NULL;
error = wasmtime_module_new(engine, (uint8_t*) wasm.data, wasm.size, &module);
wasm_byte_vec_delete(&wasm);
if (error != NULL)
exit_with_error("failed to compile module", error, NULL);
wasm_trap_t *trap = NULL;
wasmtime_instance_t instance;
error = wasmtime_instance_new(context, module, NULL, 0, &instance, &trap);
if (error != NULL || trap != NULL)
exit_with_error("failed to instantiate", error, trap);
wasmtime_module_delete(module);
// Lookup our `run` export function
wasmtime_extern_t run;
bool ok = wasmtime_instance_export_get(context, &instance, "run", 3, &run);
assert(ok);
assert(run.kind == WASMTIME_EXTERN_FUNC);
// Spawn a thread to send us an interrupt after a period of time.
spawn_interrupt(engine);
// And call it!
printf("Entering infinite loop...\n");
error = wasmtime_func_call(context, &run.of.func, NULL, 0, NULL, 0, &trap);
assert(error == NULL);
assert(trap != NULL);
printf("Got a trap!...\n");
wasmtime_store_delete(store);
wasm_engine_delete(engine);
return 0;
}
static void exit_with_error(const char *message, wasmtime_error_t *error, wasm_trap_t *trap) {
fprintf(stderr, "error: %s\n", message);
wasm_byte_vec_t error_message;
if (error != NULL) {
wasmtime_error_message(error, &error_message);
wasmtime_error_delete(error);
} else {
wasm_trap_message(trap, &error_message);
wasm_trap_delete(trap);
}
fprintf(stderr, "%.*s\n", (int) error_message.size, error_message.data);
wasm_byte_vec_delete(&error_message);
exit(1);
}