Files
wasmtime/crates/fuzzing/src/oracles.rs

842 lines
32 KiB
Rust

//! Oracles.
//!
//! Oracles take a test case and determine whether we have a bug. For example,
//! one of the simplest oracles is to take a Wasm binary as our input test case,
//! validate and instantiate it, and (implicitly) check that no assertions
//! failed or segfaults happened. A more complicated oracle might compare the
//! result of executing a Wasm file with and without optimizations enabled, and
//! make sure that the two executions are observably identical.
//!
//! When an oracle finds a bug, it should report it to the fuzzing engine by
//! panicking.
pub mod dummy;
use crate::generators;
use anyhow::Context;
use log::{debug, warn};
use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
use std::sync::{Arc, Condvar, Mutex};
use std::time::{Duration, Instant};
use wasmtime::*;
use wasmtime_wast::WastContext;
#[cfg(not(any(windows, target_arch = "s390x")))]
pub use self::v8::*;
#[cfg(not(any(windows, target_arch = "s390x")))]
mod v8;
static CNT: AtomicUsize = AtomicUsize::new(0);
/// Logs a wasm file to the filesystem to make it easy to figure out what wasm
/// was used when debugging.
pub fn log_wasm(wasm: &[u8]) {
super::init_fuzzing();
if !log::log_enabled!(log::Level::Debug) {
return;
}
let i = CNT.fetch_add(1, SeqCst);
let name = format!("testcase{}.wasm", i);
std::fs::write(&name, wasm).expect("failed to write wasm file");
log::debug!("wrote wasm file to `{}`", name);
let wat = format!("testcase{}.wat", i);
match wasmprinter::print_bytes(wasm) {
Ok(s) => std::fs::write(&wat, s).expect("failed to write wat file"),
// If wasmprinter failed remove a `*.wat` file, if any, to avoid
// confusing a preexisting one with this wasm which failed to get
// printed.
Err(_) => drop(std::fs::remove_file(&wat)),
}
}
/// The `T` in `Store<T>` for fuzzing stores, used to limit resource
/// consumption during fuzzing.
pub struct StoreLimits {
/// Remaining memory, in bytes, left to allocate
remaining_memory: usize,
/// Whether or not an allocation request has been denied
oom: bool,
}
impl StoreLimits {
/// Creates the default set of limits for all fuzzing stores.
pub fn new() -> StoreLimits {
StoreLimits {
// Limits tables/memories within a store to at most 1gb for now to
// exercise some larger address but not overflow various limits.
remaining_memory: 1 << 30,
oom: false,
}
}
fn alloc(&mut self, amt: usize) -> bool {
match self.remaining_memory.checked_sub(amt) {
Some(mem) => {
self.remaining_memory = mem;
true
}
None => {
self.oom = true;
false
}
}
}
}
impl ResourceLimiter for StoreLimits {
fn memory_growing(&mut self, current: usize, desired: usize, _maximum: Option<usize>) -> bool {
self.alloc(desired - current)
}
fn table_growing(&mut self, current: u32, desired: u32, _maximum: Option<u32>) -> bool {
let delta = (desired - current) as usize * std::mem::size_of::<usize>();
self.alloc(delta)
}
}
/// Methods of timing out execution of a WebAssembly module
#[derive(Debug)]
pub enum Timeout {
/// No timeout is used, it should be guaranteed via some other means that
/// the input does not infinite loop.
None,
/// A time-based timeout is used with a sleeping thread sending a signal
/// after the specified duration.
Time(Duration),
/// Fuel-based timeouts are used where the specified fuel is all that the
/// provided wasm module is allowed to consume.
Fuel(u64),
}
/// Instantiate the Wasm buffer, and implicitly fail if we have an unexpected
/// panic or segfault or anything else that can be detected "passively".
///
/// The engine will be configured using provided config.
pub fn instantiate(wasm: &[u8], known_valid: bool, config: &generators::Config, timeout: Timeout) {
let mut store = config.to_store();
let mut timeout_state = SignalOnDrop::default();
match timeout {
Timeout::Fuel(fuel) => {
// consume the default fuel in the store ...
let remaining = store.consume_fuel(0).unwrap();
store.consume_fuel(remaining - 1).unwrap();
// ... then add back in how much fuel we're allowing here
store.add_fuel(fuel).unwrap();
}
// If a timeout is requested then we spawn a helper thread to wait for
// the requested time and then send us a signal to get interrupted. We
// also arrange for the thread's sleep to get interrupted if we return
// early (or the wasm returns within the time limit), which allows the
// thread to get torn down.
//
// This prevents us from creating a huge number of sleeping threads if
// this function is executed in a loop, like it does on nightly fuzzing
// infrastructure.
Timeout::Time(timeout) => {
let handle = store.interrupt_handle().unwrap();
timeout_state.spawn_timeout(timeout, move || handle.interrupt());
}
Timeout::None => {}
}
log_wasm(wasm);
let module = match Module::new(store.engine(), wasm) {
Ok(module) => module,
Err(_) if !known_valid => return,
Err(e) => panic!("failed to compile module: {:?}", e),
};
instantiate_with_dummy(&mut store, &module);
}
fn instantiate_with_dummy(store: &mut Store<StoreLimits>, module: &Module) -> Option<Instance> {
// Creation of imports can fail due to resource limit constraints, and then
// instantiation can naturally fail for a number of reasons as well. Bundle
// the two steps together to match on the error below.
let instance =
dummy::dummy_linker(store, module).and_then(|l| l.instantiate(&mut *store, module));
let e = match instance {
Ok(i) => return Some(i),
Err(e) => e,
};
// If the instantiation hit OOM for some reason then that's ok, it's
// expected that fuzz-generated programs try to allocate lots of
// stuff.
if store.data().oom {
return None;
}
// Allow traps which can happen normally with `unreachable` or a
// timeout or such
if e.downcast_ref::<Trap>().is_some() {
return None;
}
let string = e.to_string();
// Also allow errors related to fuel consumption
if string.contains("all fuel consumed")
// Currently we instantiate with a `Linker` which can't instantiate
// every single module under the sun due to using name-based resolution
// rather than positional-based resolution
|| string.contains("incompatible import type")
{
return None;
}
// Everything else should be a bug in the fuzzer or a bug in wasmtime
panic!("failed to instantiate {:?}", e);
}
/// Instantiate the given Wasm module with each `Config` and call all of its
/// exports. Modulo OOM, non-canonical NaNs, and usage of Wasm features that are
/// or aren't enabled for different configs, we should get the same results when
/// we call the exported functions for all of our different configs.
pub fn differential_execution(
wasm: &[u8],
module_config: &generators::ModuleConfig,
configs: &[generators::WasmtimeConfig],
) {
use std::collections::{HashMap, HashSet};
// We need at least two configs.
if configs.len() < 2
// And all the configs should be unique.
|| configs.iter().collect::<HashSet<_>>().len() != configs.len()
{
return;
}
let mut export_func_results: HashMap<String, Result<Box<[Val]>, Trap>> = Default::default();
log_wasm(&wasm);
for fuzz_config in configs {
let fuzz_config = generators::Config {
module_config: module_config.clone(),
wasmtime: fuzz_config.clone(),
};
log::debug!("fuzz config: {:?}", fuzz_config);
let mut store = fuzz_config.to_store();
let module = Module::new(store.engine(), &wasm).unwrap();
// TODO: we should implement tracing versions of these dummy imports
// that record a trace of the order that imported functions were called
// in and with what values. Like the results of exported functions,
// calls to imports should also yield the same values for each
// configuration, and we should assert that.
let instance = match instantiate_with_dummy(&mut store, &module) {
Some(instance) => instance,
None => continue,
};
let exports = instance
.exports(&mut store)
.filter_map(|e| {
let name = e.name().to_string();
e.into_func().map(|f| (name, f))
})
.collect::<Vec<_>>();
for (name, f) in exports {
log::debug!("invoke export {:?}", name);
let ty = f.ty(&store);
let params = dummy::dummy_values(ty.params());
let mut results = vec![Val::I32(0); ty.results().len()];
let this_result = f
.call(&mut store, &params, &mut results)
.map(|()| results.into())
.map_err(|e| e.downcast::<Trap>().unwrap());
let existing_result = export_func_results
.entry(name.to_string())
.or_insert_with(|| this_result.clone());
assert_same_export_func_result(&existing_result, &this_result, &name);
}
}
fn assert_same_export_func_result(
lhs: &Result<Box<[Val]>, Trap>,
rhs: &Result<Box<[Val]>, Trap>,
func_name: &str,
) {
let fail = || {
panic!(
"differential fuzzing failed: exported func {} returned two \
different results: {:?} != {:?}",
func_name, lhs, rhs
)
};
match (lhs, rhs) {
(Err(a), Err(b)) => {
if a.trap_code() != b.trap_code() {
fail();
}
}
(Ok(lhs), Ok(rhs)) => {
if lhs.len() != rhs.len() {
fail();
}
for (lhs, rhs) in lhs.iter().zip(rhs.iter()) {
match (lhs, rhs) {
(Val::I32(lhs), Val::I32(rhs)) if lhs == rhs => continue,
(Val::I64(lhs), Val::I64(rhs)) if lhs == rhs => continue,
(Val::V128(lhs), Val::V128(rhs)) if lhs == rhs => continue,
(Val::F32(lhs), Val::F32(rhs)) if f32_equal(*lhs, *rhs) => continue,
(Val::F64(lhs), Val::F64(rhs)) if f64_equal(*lhs, *rhs) => continue,
(Val::ExternRef(_), Val::ExternRef(_))
| (Val::FuncRef(_), Val::FuncRef(_)) => continue,
_ => fail(),
}
}
}
_ => fail(),
}
}
}
fn f32_equal(a: u32, b: u32) -> bool {
let a = f32::from_bits(a);
let b = f32::from_bits(b);
a == b || (a.is_nan() && b.is_nan())
}
fn f64_equal(a: u64, b: u64) -> bool {
let a = f64::from_bits(a);
let b = f64::from_bits(b);
a == b || (a.is_nan() && b.is_nan())
}
/// Invoke the given API calls.
pub fn make_api_calls(api: generators::api::ApiCalls) {
use crate::generators::api::ApiCall;
use std::collections::HashMap;
let mut store: Option<Store<StoreLimits>> = None;
let mut modules: HashMap<usize, Module> = Default::default();
let mut instances: HashMap<usize, Instance> = Default::default();
for call in api.calls {
match call {
ApiCall::StoreNew(config) => {
log::trace!("creating store");
assert!(store.is_none());
store = Some(config.to_store());
}
ApiCall::ModuleNew { id, wasm } => {
log::debug!("creating module: {}", id);
log_wasm(&wasm);
let module = match Module::new(store.as_ref().unwrap().engine(), &wasm) {
Ok(m) => m,
Err(_) => continue,
};
let old = modules.insert(id, module);
assert!(old.is_none());
}
ApiCall::ModuleDrop { id } => {
log::trace!("dropping module: {}", id);
drop(modules.remove(&id));
}
ApiCall::InstanceNew { id, module } => {
log::trace!("instantiating module {} as {}", module, id);
let module = match modules.get(&module) {
Some(m) => m,
None => continue,
};
let store = store.as_mut().unwrap();
if let Some(instance) = instantiate_with_dummy(store, module) {
instances.insert(id, instance);
}
}
ApiCall::InstanceDrop { id } => {
log::trace!("dropping instance {}", id);
drop(instances.remove(&id));
}
ApiCall::CallExportedFunc { instance, nth } => {
log::trace!("calling instance export {} / {}", instance, nth);
let instance = match instances.get(&instance) {
Some(i) => i,
None => {
// Note that we aren't guaranteed to instantiate valid
// modules, see comments in `InstanceNew` for details on
// that. But the API call generator can't know if
// instantiation failed, so we might not actually have
// this instance. When that's the case, just skip the
// API call and keep going.
continue;
}
};
let store = store.as_mut().unwrap();
let funcs = instance
.exports(&mut *store)
.filter_map(|e| match e.into_extern() {
Extern::Func(f) => Some(f.clone()),
_ => None,
})
.collect::<Vec<_>>();
if funcs.is_empty() {
continue;
}
let nth = nth % funcs.len();
let f = &funcs[nth];
let ty = f.ty(&store);
let params = dummy::dummy_values(ty.params());
let mut results = vec![Val::I32(0); ty.results().len()];
let _ = f.call(store, &params, &mut results);
}
}
}
}
/// Executes the wast `test` spectest with the `config` specified.
///
/// Ensures that spec tests pass regardless of the `Config`.
pub fn spectest(mut fuzz_config: generators::Config, test: generators::SpecTest) {
fuzz_config.module_config.set_spectest_compliant();
log::debug!("running {:?} with {:?}", test.file, fuzz_config);
let mut wast_context = WastContext::new(fuzz_config.to_store());
wast_context.register_spectest().unwrap();
wast_context
.run_buffer(test.file, test.contents.as_bytes())
.unwrap();
}
/// Execute a series of `table.get` and `table.set` operations.
pub fn table_ops(mut fuzz_config: generators::Config, ops: generators::table_ops::TableOps) {
let expected_drops = Arc::new(AtomicUsize::new(ops.num_params() as usize));
let num_dropped = Arc::new(AtomicUsize::new(0));
{
fuzz_config.wasmtime.consume_fuel = true;
let mut store = fuzz_config.to_store();
// consume the default fuel in the store ...
let remaining = store.consume_fuel(0).unwrap();
store.consume_fuel(remaining - 1).unwrap();
// ... then add back in how much fuel we're allowing here
store.add_fuel(1_000).unwrap();
let wasm = ops.to_wasm_binary();
log_wasm(&wasm);
let module = match Module::new(store.engine(), &wasm) {
Ok(m) => m,
Err(_) => return,
};
let mut linker = Linker::new(store.engine());
// To avoid timeouts, limit the number of explicit GCs we perform per
// test case.
const MAX_GCS: usize = 5;
let num_gcs = AtomicUsize::new(0);
linker
.define(
"",
"gc",
// NB: use `Func::new` so that this can still compile on the old x86
// backend, where `IntoFunc` isn't implemented for multi-value
// returns.
Func::new(
&mut store,
FuncType::new(
vec![],
vec![ValType::ExternRef, ValType::ExternRef, ValType::ExternRef],
),
{
let num_dropped = num_dropped.clone();
let expected_drops = expected_drops.clone();
move |mut caller: Caller<'_, StoreLimits>, _params, results| {
if num_gcs.fetch_add(1, SeqCst) < MAX_GCS {
caller.gc();
}
expected_drops.fetch_add(3, SeqCst);
results[0] =
Some(ExternRef::new(CountDrops(num_dropped.clone()))).into();
results[1] =
Some(ExternRef::new(CountDrops(num_dropped.clone()))).into();
results[2] =
Some(ExternRef::new(CountDrops(num_dropped.clone()))).into();
Ok(())
}
},
),
)
.unwrap();
linker
.func_wrap("", "take_refs", {
let expected_drops = expected_drops.clone();
move |a: Option<ExternRef>, b: Option<ExternRef>, c: Option<ExternRef>| {
// Do the assertion on each ref's inner data, even though it
// all points to the same atomic, so that if we happen to
// run into a use-after-free bug with one of these refs we
// are more likely to trigger a segfault.
if let Some(a) = a {
let a = a.data().downcast_ref::<CountDrops>().unwrap();
assert!(a.0.load(SeqCst) <= expected_drops.load(SeqCst));
}
if let Some(b) = b {
let b = b.data().downcast_ref::<CountDrops>().unwrap();
assert!(b.0.load(SeqCst) <= expected_drops.load(SeqCst));
}
if let Some(c) = c {
let c = c.data().downcast_ref::<CountDrops>().unwrap();
assert!(c.0.load(SeqCst) <= expected_drops.load(SeqCst));
}
}
})
.unwrap();
linker
.define(
"",
"make_refs",
// NB: use `Func::new` so that this can still compile on the old
// x86 backend, where `IntoFunc` isn't implemented for
// multi-value returns.
Func::new(
&mut store,
FuncType::new(
vec![],
vec![ValType::ExternRef, ValType::ExternRef, ValType::ExternRef],
),
{
let num_dropped = num_dropped.clone();
let expected_drops = expected_drops.clone();
move |_caller, _params, results| {
expected_drops.fetch_add(3, SeqCst);
results[0] =
Some(ExternRef::new(CountDrops(num_dropped.clone()))).into();
results[1] =
Some(ExternRef::new(CountDrops(num_dropped.clone()))).into();
results[2] =
Some(ExternRef::new(CountDrops(num_dropped.clone()))).into();
Ok(())
}
},
),
)
.unwrap();
let instance = linker.instantiate(&mut store, &module).unwrap();
let run = instance.get_func(&mut store, "run").unwrap();
let args: Vec<_> = (0..ops.num_params())
.map(|_| Val::ExternRef(Some(ExternRef::new(CountDrops(num_dropped.clone())))))
.collect();
let _ = run.call(&mut store, &args, &mut []);
// Do a final GC after running the Wasm.
store.gc();
}
assert_eq!(num_dropped.load(SeqCst), expected_drops.load(SeqCst));
return;
struct CountDrops(Arc<AtomicUsize>);
impl Drop for CountDrops {
fn drop(&mut self) {
self.0.fetch_add(1, SeqCst);
}
}
}
/// Perform differential execution between Cranelift and wasmi, diffing the
/// resulting memory image when execution terminates. This relies on the
/// module-under-test to be instrumented to bound the execution time. Invoke
/// with a module generated by `wasm-smith` using the
/// `SingleFunctionModuleConfig` configuration type for best results.
///
/// May return `None` if we early-out due to a rejected fuzz config; these
/// should be rare if modules are generated appropriately.
pub fn differential_wasmi_execution(wasm: &[u8], config: &generators::Config) -> Option<()> {
crate::init_fuzzing();
log_wasm(wasm);
// Instantiate wasmi module and instance.
let wasmi_module = wasmi::Module::from_buffer(&wasm[..]).ok()?;
let wasmi_instance =
wasmi::ModuleInstance::new(&wasmi_module, &wasmi::ImportsBuilder::default()).ok()?;
let wasmi_instance = wasmi_instance.assert_no_start();
// If wasmi succeeded then we assert that wasmtime will also succeed.
let (wasmtime_module, mut wasmtime_store) = differential_store(wasm, config);
let wasmtime_instance = Instance::new(&mut wasmtime_store, &wasmtime_module, &[])
.expect("Wasmtime can instantiate module");
// Introspect wasmtime module to find name of an exported function and of an
// exported memory.
let (func_name, ty) = first_exported_function(&wasmtime_module)?;
let memory_name = first_exported_memory(&wasmtime_module)?;
let wasmi_mem_export = wasmi_instance.export_by_name(memory_name).unwrap();
let wasmi_mem = wasmi_mem_export.as_memory().unwrap();
let wasmi_main_export = wasmi_instance.export_by_name(func_name).unwrap();
let wasmi_main = wasmi_main_export.as_func().unwrap();
let wasmi_val = wasmi::FuncInstance::invoke(&wasmi_main, &[], &mut wasmi::NopExternals);
let wasmtime_mem = wasmtime_instance
.get_memory(&mut wasmtime_store, memory_name)
.expect("memory export is present");
let wasmtime_main = wasmtime_instance
.get_func(&mut wasmtime_store, func_name)
.expect("function export is present");
let mut wasmtime_results = vec![Val::I32(0); ty.results().len()];
let wasmtime_val = wasmtime_main
.call(&mut wasmtime_store, &[], &mut wasmtime_results)
.map(|()| wasmtime_results.get(0).cloned());
debug!(
"Successful execution: wasmi returned {:?}, wasmtime returned {:?}",
wasmi_val, wasmtime_val
);
match (&wasmi_val, &wasmtime_val) {
(&Ok(Some(wasmi::RuntimeValue::I32(a))), &Ok(Some(Val::I32(b)))) if a == b => {}
(&Ok(Some(wasmi::RuntimeValue::F32(a))), &Ok(Some(Val::F32(b))))
if f32_equal(a.to_bits(), b) => {}
(&Ok(Some(wasmi::RuntimeValue::I64(a))), &Ok(Some(Val::I64(b)))) if a == b => {}
(&Ok(Some(wasmi::RuntimeValue::F64(a))), &Ok(Some(Val::F64(b))))
if f64_equal(a.to_bits(), b) => {}
(&Ok(None), &Ok(None)) => {}
(&Err(_), &Err(_)) => {}
_ => {
panic!(
"Values do not match: wasmi returned {:?}; wasmtime returned {:?}",
wasmi_val, wasmtime_val
);
}
}
if wasmi_mem.current_size().0 != wasmtime_mem.size(&wasmtime_store) as usize {
panic!("resulting memories are not the same size");
}
// Wasmi memory may be stored non-contiguously; copy it out to a contiguous chunk.
let mut wasmi_buf: Vec<u8> = vec![0; wasmtime_mem.data_size(&wasmtime_store)];
wasmi_mem
.get_into(0, &mut wasmi_buf[..])
.expect("can access wasmi memory");
let wasmtime_slice = wasmtime_mem.data(&wasmtime_store);
if wasmi_buf.len() >= 64 {
debug!("-> First 64 bytes of wasmi heap: {:?}", &wasmi_buf[0..64]);
debug!(
"-> First 64 bytes of Wasmtime heap: {:?}",
&wasmtime_slice[0..64]
);
}
if &wasmi_buf[..] != &wasmtime_slice[..] {
panic!("memory contents are not equal");
}
Some(())
}
/// Perform differential execution between Wasmtime and the official WebAssembly
/// specification interpreter.
///
/// May return `None` if we early-out due to a rejected fuzz config.
pub fn differential_spec_execution(wasm: &[u8], config: &generators::Config) -> Option<()> {
crate::init_fuzzing();
debug!("config: {:#?}", config);
log_wasm(wasm);
// Run the spec interpreter first, then Wasmtime. The order is important
// because both sides (OCaml runtime and Wasmtime) register signal handlers;
// Wasmtime uses these signal handlers for catching various WebAssembly
// failures. On certain OSes (e.g. Linux x86_64), the signal handlers
// interfere, observable as an uncaught `SIGSEGV`--not even caught by
// libFuzzer. By running Wasmtime second, its signal handlers are registered
// most recently and they catch failures appropriately.
let spec_vals = wasm_spec_interpreter::interpret(wasm, vec![]);
debug!("spec interpreter returned: {:?}", &spec_vals);
let wasmtime_vals = run_in_wasmtime(wasm, config, &[]);
debug!("Wasmtime returned: {:?}", wasmtime_vals);
// Match a spec interpreter value against a Wasmtime value. Eventually this
// should support references and `v128` (TODO).
fn matches(spec_val: &wasm_spec_interpreter::Value, wasmtime_val: &wasmtime::Val) -> bool {
match (spec_val, wasmtime_val) {
(wasm_spec_interpreter::Value::I32(a), wasmtime::Val::I32(b)) => a == b,
(wasm_spec_interpreter::Value::I64(a), wasmtime::Val::I64(b)) => a == b,
(wasm_spec_interpreter::Value::F32(a), wasmtime::Val::F32(b)) => {
f32_equal(*a as u32, *b)
}
(wasm_spec_interpreter::Value::F64(a), wasmtime::Val::F64(b)) => {
f64_equal(*a as u64, *b)
}
(_, _) => unreachable!("fuzzing non-scalar value types is still TODO"),
}
}
match (&spec_vals, &wasmtime_vals) {
// Compare the returned values, failing if they do not match.
(Ok(spec_vals), Ok(wasmtime_vals)) => {
let all_match = spec_vals
.iter()
.zip(wasmtime_vals)
.all(|(s, w)| matches(s, w));
if !all_match {
panic!(
"Values do not match: spec returned {:?}; wasmtime returned {:?}",
spec_vals, wasmtime_vals
);
}
}
// If both sides fail, skip this fuzz execution.
(Err(spec_error), Err(wasmtime_error)) => {
// The `None` value returned here indicates that both sides
// failed--if we see too many of these we might be failing too often
// to check instruction semantics. At some point it would be
// beneficial to compare the error messages from both sides (TODO).
// It would also be good to keep track of statistics about the
// ratios of the kinds of errors the fuzzer sees (TODO).
warn!(
"Both sides failed: spec returned '{}'; wasmtime returned {:?}",
spec_error, wasmtime_error
);
return None;
}
// If only one side fails, fail the fuzz the test.
_ => {
panic!(
"Only one side failed: spec returned {:?}; wasmtime returned {:?}",
&spec_vals, &wasmtime_vals
);
}
}
// TODO Compare memory contents.
Some(())
}
fn differential_store(
wasm: &[u8],
fuzz_config: &generators::Config,
) -> (Module, Store<StoreLimits>) {
let store = fuzz_config.to_store();
let module = Module::new(store.engine(), &wasm).expect("Wasmtime can compile module");
(module, store)
}
/// Helper for instantiating and running a Wasm module in Wasmtime and returning
/// its `Val` results.
fn run_in_wasmtime(
wasm: &[u8],
config: &generators::Config,
params: &[Val],
) -> anyhow::Result<Vec<Val>> {
// Instantiate wasmtime module and instance.
let (wasmtime_module, mut wasmtime_store) = differential_store(wasm, config);
let wasmtime_instance = Instance::new(&mut wasmtime_store, &wasmtime_module, &[])
.context("Wasmtime cannot instantiate module")?;
// Find the first exported function.
let (func_name, ty) =
first_exported_function(&wasmtime_module).context("Cannot find exported function")?;
let wasmtime_main = wasmtime_instance
.get_func(&mut wasmtime_store, &func_name[..])
.expect("function export is present");
// Execute the function and return the values.
let mut results = vec![Val::I32(0); ty.results().len()];
wasmtime_main
.call(&mut wasmtime_store, params, &mut results)
.map(|()| results)
}
// Introspect wasmtime module to find the name of the first exported function.
fn first_exported_function(module: &wasmtime::Module) -> Option<(&str, FuncType)> {
for e in module.exports() {
match e.ty() {
wasmtime::ExternType::Func(ty) => return Some((e.name(), ty)),
_ => {}
}
}
None
}
fn first_exported_memory(module: &Module) -> Option<&str> {
for e in module.exports() {
match e.ty() {
wasmtime::ExternType::Memory(..) => return Some(e.name()),
_ => {}
}
}
None
}
#[derive(Default)]
struct SignalOnDrop {
state: Arc<(Mutex<bool>, Condvar)>,
thread: Option<std::thread::JoinHandle<()>>,
}
impl SignalOnDrop {
fn spawn_timeout(&mut self, dur: Duration, closure: impl FnOnce() + Send + 'static) {
let state = self.state.clone();
let start = Instant::now();
self.thread = Some(std::thread::spawn(move || {
// Using our mutex/condvar we wait here for the first of `dur` to
// pass or the `SignalOnDrop` instance to get dropped.
let (lock, cvar) = &*state;
let mut signaled = lock.lock().unwrap();
while !*signaled {
// Adjust our requested `dur` based on how much time has passed.
let dur = match dur.checked_sub(start.elapsed()) {
Some(dur) => dur,
None => break,
};
let (lock, result) = cvar.wait_timeout(signaled, dur).unwrap();
signaled = lock;
// If we timed out for sure then there's no need to continue
// since we'll just abort on the next `checked_sub` anyway.
if result.timed_out() {
break;
}
}
drop(signaled);
closure();
}));
}
}
impl Drop for SignalOnDrop {
fn drop(&mut self) {
if let Some(thread) = self.thread.take() {
let (lock, cvar) = &*self.state;
// Signal our thread that we've been dropped and wake it up if it's
// blocked.
let mut g = lock.lock().unwrap();
*g = true;
cvar.notify_one();
drop(g);
// ... and then wait for the thread to exit to ensure we clean up
// after ourselves.
thread.join().unwrap();
}
}
}