Files
wasmtime/crates/environ/src/cranelift.rs
Yury Delendik 42127aac4e Refactor Cache logic to include debug information (#2065)
* move caching to the CompilationArtifacts

* mv cache_config from Compiler to CompiledModule

* hash isa flags

* no cache for wasm2obj

* mv caching to wasmtime crate

* account each Compiler field when hash
2020-07-23 12:10:13 -05:00

473 lines
18 KiB
Rust

//! Support for compiling with Cranelift.
// # How does Wasmtime prevent stack overflow?
//
// A few locations throughout the codebase link to this file to explain
// interrupts and stack overflow. To start off, let's take a look at stack
// overflow. Wasm code is well-defined to have stack overflow being recoverable
// and raising a trap, so we need to handle this somehow! There's also an added
// constraint where as an embedder you frequently are running host-provided
// code called from wasm. WebAssembly and native code currently share the same
// call stack, so you want to make sure that your host-provided code will have
// enough call-stack available to it.
//
// Given all that, the way that stack overflow is handled is by adding a
// prologue check to all JIT functions for how much native stack is remaining.
// The `VMContext` pointer is the first argument to all functions, and the first
// field of this structure is `*const VMInterrupts` and the first field of that
// is the stack limit. Note that the stack limit in this case means "if the
// stack pointer goes below this, trap". Each JIT function which consumes stack
// space or isn't a leaf function starts off by loading the stack limit,
// checking it against the stack pointer, and optionally traps.
//
// This manual check allows the embedder (us) to give wasm a relatively precise
// amount of stack allocation. Using this scheme we reserve a chunk of stack
// for wasm code relative from where wasm code was called. This ensures that
// native code called by wasm should have native stack space to run, and the
// numbers of stack spaces here should all be configurable for various
// embeddings.
//
// Note that we do not consider each thread's stack guard page here. It's
// considered that if you hit that you still abort the whole program. This
// shouldn't happen most of the time because wasm is always stack-bound and
// it's up to the embedder to bound its own native stack.
//
// So all-in-all, that's how we implement stack checks. Note that stack checks
// cannot be disabled because it's a feature of core wasm semantics. This means
// that all functions almost always have a stack check prologue, and it's up to
// us to optimize away that cost as much as we can.
//
// For more information about the tricky bits of managing the reserved stack
// size of wasm, see the implementation in `traphandlers.rs` in the
// `update_stack_limit` function.
//
// # How is Wasmtime interrupted?
//
// Ok so given all that background of stack checks, the next thing we want to
// build on top of this is the ability to *interrupt* executing wasm code. This
// is useful to ensure that wasm always executes within a particular time slice
// or otherwise doesn't consume all CPU resources on a system. There are two
// major ways that interrupts are required:
//
// * Loops - likely immediately apparent but it's easy to write an infinite
// loop in wasm, so we need the ability to interrupt loops.
// * Function entries - somewhat more subtle, but imagine a module where each
// function calls the next function twice. This creates 2^n calls pretty
// quickly, so a pretty small module can export a function with no loops
// that takes an extremely long time to call.
//
// In many cases if an interrupt comes in you want to interrupt host code as
// well, but we're explicitly not considering that here. We're hoping that
// interrupting host code is largely left to the embedder (e.g. figuring out
// how to interrupt blocking syscalls) and they can figure that out. The purpose
// of this feature is to basically only give the ability to interrupt
// currently-executing wasm code (or triggering an interrupt as soon as wasm
// reenters itself).
//
// To implement interruption of loops we insert code at the head of all loops
// which checks the stack limit counter. If the counter matches a magical
// sentinel value that's impossible to be the real stack limit, then we
// interrupt the loop and trap. To implement interrupts of functions, we
// actually do the same thing where the magical sentinel value we use here is
// automatically considered as considering all stack pointer values as "you ran
// over your stack". This means that with a write of a magical value to one
// location we can interrupt both loops and function bodies.
//
// The "magical value" here is `usize::max_value() - N`. We reserve
// `usize::max_value()` for "the stack limit isn't set yet" and so -N is
// then used for "you got interrupted". We do a bit of patching afterwards to
// translate a stack overflow into an interrupt trap if we see that an
// interrupt happened. Note that `N` here is a medium-size-ish nonzero value
// chosen in coordination with the cranelift backend. Currently it's 32k. The
// value of N is basically a threshold in the backend for "anything less than
// this requires only one branch in the prologue, any stack size bigger requires
// two branches". Naturally we want most functions to have one branch, but we
// also need to actually catch stack overflow, so for now 32k is chosen and it's
// assume no valid stack pointer will ever be `usize::max_value() - 32k`.
use crate::address_map::{FunctionAddressMap, InstructionAddressMap};
use crate::compilation::{
Compilation, CompileError, CompiledFunction, Relocation, RelocationTarget, StackMapInformation,
TrapInformation,
};
use crate::compilation::{CompileResult, Compiler};
use crate::func_environ::{get_func_name, FuncEnvironment};
use crate::{FunctionBodyData, ModuleLocal, ModuleTranslation, Tunables};
use cranelift_codegen::ir::{self, ExternalName};
use cranelift_codegen::machinst::buffer::MachSrcLoc;
use cranelift_codegen::print_errors::pretty_error;
use cranelift_codegen::{binemit, isa, Context};
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{DefinedFuncIndex, FuncIndex, FuncTranslator, ModuleTranslationState};
#[cfg(feature = "parallel-compilation")]
use rayon::prelude::{IntoParallelRefIterator, ParallelIterator};
use std::convert::TryFrom;
/// Implementation of a relocation sink that just saves all the information for later
pub struct RelocSink {
/// Current function index.
func_index: FuncIndex,
/// Relocations recorded for the function.
pub func_relocs: Vec<Relocation>,
}
impl binemit::RelocSink for RelocSink {
fn reloc_block(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_block_offset: binemit::CodeOffset,
) {
// This should use the `offsets` field of `ir::Function`.
panic!("block headers not yet implemented");
}
fn reloc_external(
&mut self,
offset: binemit::CodeOffset,
_srcloc: ir::SourceLoc,
reloc: binemit::Reloc,
name: &ExternalName,
addend: binemit::Addend,
) {
let reloc_target = if let ExternalName::User { namespace, index } = *name {
debug_assert_eq!(namespace, 0);
RelocationTarget::UserFunc(FuncIndex::from_u32(index))
} else if let ExternalName::LibCall(libcall) = *name {
RelocationTarget::LibCall(libcall)
} else {
panic!("unrecognized external name")
};
self.func_relocs.push(Relocation {
reloc,
reloc_target,
offset,
addend,
});
}
fn reloc_constant(
&mut self,
_code_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_constant_offset: ir::ConstantOffset,
) {
// Do nothing for now: cranelift emits constant data after the function code and also emits
// function code with correct relative offsets to the constant data.
}
fn reloc_jt(&mut self, offset: binemit::CodeOffset, reloc: binemit::Reloc, jt: ir::JumpTable) {
self.func_relocs.push(Relocation {
reloc,
reloc_target: RelocationTarget::JumpTable(self.func_index, jt),
offset,
addend: 0,
});
}
}
impl RelocSink {
/// Return a new `RelocSink` instance.
pub fn new(func_index: FuncIndex) -> Self {
Self {
func_index,
func_relocs: Vec::new(),
}
}
}
/// Implementation of a trap sink that simply stores all trap info in-memory
#[derive(Default)]
pub struct TrapSink {
/// The in-memory vector of trap info
pub traps: Vec<TrapInformation>,
}
impl TrapSink {
/// Create a new `TrapSink`
pub fn new() -> Self {
Self::default()
}
}
impl binemit::TrapSink for TrapSink {
fn trap(
&mut self,
code_offset: binemit::CodeOffset,
source_loc: ir::SourceLoc,
trap_code: ir::TrapCode,
) {
self.traps.push(TrapInformation {
code_offset,
source_loc,
trap_code,
});
}
}
#[derive(Default)]
struct StackMapSink {
infos: Vec<StackMapInformation>,
}
impl binemit::StackmapSink for StackMapSink {
fn add_stackmap(&mut self, code_offset: binemit::CodeOffset, stack_map: binemit::Stackmap) {
self.infos.push(StackMapInformation {
code_offset,
stack_map,
});
}
}
impl StackMapSink {
fn finish(mut self) -> Vec<StackMapInformation> {
self.infos.sort_unstable_by_key(|info| info.code_offset);
self.infos
}
}
fn get_function_address_map<'data>(
context: &Context,
data: &FunctionBodyData<'data>,
body_len: usize,
isa: &dyn isa::TargetIsa,
) -> FunctionAddressMap {
let mut instructions = Vec::new();
if let Some(ref mcr) = &context.mach_compile_result {
// New-style backend: we have a `MachCompileResult` that will give us `MachSrcLoc` mapping
// tuples.
for &MachSrcLoc { start, end, loc } in mcr.buffer.get_srclocs_sorted() {
instructions.push(InstructionAddressMap {
srcloc: loc,
code_offset: start as usize,
code_len: (end - start) as usize,
});
}
} else {
// Old-style backend: we need to traverse the instruction/encoding info in the function.
let func = &context.func;
let mut blocks = func.layout.blocks().collect::<Vec<_>>();
blocks.sort_by_key(|block| func.offsets[*block]); // Ensure inst offsets always increase
let encinfo = isa.encoding_info();
for block in blocks {
for (offset, inst, size) in func.inst_offsets(block, &encinfo) {
let srcloc = func.srclocs[inst];
instructions.push(InstructionAddressMap {
srcloc,
code_offset: offset as usize,
code_len: size as usize,
});
}
}
}
// Generate artificial srcloc for function start/end to identify boundary
// within module. Similar to FuncTranslator::cur_srcloc(): it will wrap around
// if byte code is larger than 4 GB.
let start_srcloc = ir::SourceLoc::new(data.module_offset as u32);
let end_srcloc = ir::SourceLoc::new((data.module_offset + data.data.len()) as u32);
FunctionAddressMap {
instructions,
start_srcloc,
end_srcloc,
body_offset: 0,
body_len,
}
}
/// A compiler that compiles a WebAssembly module with Cranelift, translating the Wasm to Cranelift IR,
/// optimizing it and then translating to assembly.
pub struct Cranelift;
impl Compiler for Cranelift {
/// Compile the module using Cranelift, producing a compilation result with
/// associated relocations.
fn compile_module(
translation: &ModuleTranslation,
isa: &dyn isa::TargetIsa,
) -> Result<CompileResult, CompileError> {
compile(
isa,
&translation.module.local,
translation.module_translation.as_ref().unwrap(),
&translation.function_body_inputs,
&translation.tunables,
)
}
}
fn compile(
isa: &dyn isa::TargetIsa,
local: &ModuleLocal,
module_translation: &ModuleTranslationState,
function_body_inputs: &PrimaryMap<DefinedFuncIndex, FunctionBodyData<'_>>,
tunables: &Tunables,
) -> Result<CompileResult, CompileError> {
let mut functions = PrimaryMap::with_capacity(function_body_inputs.len());
let mut relocations = PrimaryMap::with_capacity(function_body_inputs.len());
let mut address_transforms = PrimaryMap::with_capacity(function_body_inputs.len());
let mut value_ranges = PrimaryMap::with_capacity(function_body_inputs.len());
let mut stack_slots = PrimaryMap::with_capacity(function_body_inputs.len());
let mut traps = PrimaryMap::with_capacity(function_body_inputs.len());
let mut stack_maps = PrimaryMap::with_capacity(function_body_inputs.len());
type FunctionBodyInput<'a> = (DefinedFuncIndex, &'a FunctionBodyData<'a>);
let compile_function = |func_translator: &mut FuncTranslator,
(i, input): &FunctionBodyInput| {
let func_index = local.func_index(*i);
let mut context = Context::new();
context.func.name = get_func_name(func_index);
context.func.signature = local.native_func_signature(func_index).clone();
if tunables.debug_info {
context.func.collect_debug_info();
}
let mut func_env = FuncEnvironment::new(isa.frontend_config(), local, tunables);
// We use these as constant offsets below in
// `stack_limit_from_arguments`, so assert their values here. This
// allows the closure below to get coerced to a function pointer, as
// needed by `ir::Function`.
//
// Otherwise our stack limit is specially calculated from the vmctx
// argument, where we need to load the `*const VMInterrupts`
// pointer, and then from that pointer we need to load the stack
// limit itself. Note that manual register allocation is needed here
// too due to how late in the process this codegen happens.
//
// For more information about interrupts and stack checks, see the
// top of this file.
let vmctx = context
.func
.create_global_value(ir::GlobalValueData::VMContext);
let interrupts_ptr = context.func.create_global_value(ir::GlobalValueData::Load {
base: vmctx,
offset: i32::try_from(func_env.offsets.vmctx_interrupts())
.unwrap()
.into(),
global_type: isa.pointer_type(),
readonly: true,
});
let stack_limit = context.func.create_global_value(ir::GlobalValueData::Load {
base: interrupts_ptr,
offset: i32::try_from(func_env.offsets.vminterrupts_stack_limit())
.unwrap()
.into(),
global_type: isa.pointer_type(),
readonly: false,
});
context.func.stack_limit = Some(stack_limit);
func_translator.translate(
module_translation,
input.data,
input.module_offset,
&mut context.func,
&mut func_env,
)?;
let mut code_buf: Vec<u8> = Vec::new();
let mut reloc_sink = RelocSink::new(func_index);
let mut trap_sink = TrapSink::new();
let mut stack_map_sink = StackMapSink::default();
context
.compile_and_emit(
isa,
&mut code_buf,
&mut reloc_sink,
&mut trap_sink,
&mut stack_map_sink,
)
.map_err(|error| {
CompileError::Codegen(pretty_error(&context.func, Some(isa), error))
})?;
let unwind_info = context.create_unwind_info(isa).map_err(|error| {
CompileError::Codegen(pretty_error(&context.func, Some(isa), error))
})?;
let address_transform = get_function_address_map(&context, input, code_buf.len(), isa);
let ranges = if tunables.debug_info {
let ranges = context.build_value_labels_ranges(isa).map_err(|error| {
CompileError::Codegen(pretty_error(&context.func, Some(isa), error))
})?;
Some(ranges)
} else {
None
};
Ok((
code_buf,
context.func.jt_offsets,
reloc_sink.func_relocs,
address_transform,
ranges,
context.func.stack_slots,
trap_sink.traps,
unwind_info,
stack_map_sink.finish(),
))
};
let inputs: Vec<FunctionBodyInput> = function_body_inputs.into_iter().collect();
let results: Result<Vec<_>, CompileError> = {
cfg_if::cfg_if! {
if #[cfg(feature = "parallel-compilation")] {
inputs
.par_iter()
.map_init(FuncTranslator::new, compile_function)
.collect()
} else {
let mut func_translator = FuncTranslator::new();
inputs
.iter()
.map(|input| compile_function(&mut func_translator, input))
.collect()
}
}
};
results?.into_iter().for_each(
|(
function,
func_jt_offsets,
relocs,
address_transform,
ranges,
sss,
function_traps,
unwind_info,
stack_map,
)| {
functions.push(CompiledFunction {
body: function,
jt_offsets: func_jt_offsets,
unwind_info,
});
relocations.push(relocs);
address_transforms.push(address_transform);
value_ranges.push(ranges.unwrap_or_default());
stack_slots.push(sss);
traps.push(function_traps);
stack_maps.push(stack_map);
},
);
// TODO: Reorganize where we create the Vec for the resolved imports.
Ok((
Compilation::new(functions),
relocations,
address_transforms,
value_ranges,
stack_slots,
traps,
stack_maps,
))
}