Files
wasmtime/lib/frontend/src/frontend.rs
2017-09-20 08:17:40 -07:00

737 lines
28 KiB
Rust

//! A frontend for building Cretonne IL from other languages.
use cretonne::cursor::{Cursor, FuncCursor};
use cretonne::ir::{Ebb, Type, Value, Function, Inst, JumpTable, StackSlot, JumpTableData,
StackSlotData, DataFlowGraph, InstructionData, ExtFuncData, FuncRef, SigRef,
Signature, InstBuilderBase, GlobalVarData, GlobalVar, HeapData, Heap};
use cretonne::ir::instructions::BranchInfo;
use cretonne::ir::function::DisplayFunction;
use cretonne::isa::TargetIsa;
use ssa::{SSABuilder, SideEffects, Block};
use cretonne::entity::{EntityRef, EntityMap, EntitySet};
/// Permanent structure used for translating into Cretonne IL.
pub struct ILBuilder<Variable>
where
Variable: EntityRef + Default,
{
ssa: SSABuilder<Variable>,
ebbs: EntityMap<Ebb, EbbData>,
types: EntityMap<Variable, Type>,
function_args_values: Vec<Value>,
}
/// Temporary object used to build a Cretonne IL `Function`.
pub struct FunctionBuilder<'a, Variable: 'a>
where
Variable: EntityRef + Default,
{
/// The function currently being built.
/// This field is public so the function can be re-borrowed.
pub func: &'a mut Function,
builder: &'a mut ILBuilder<Variable>,
position: Position,
pristine: bool,
}
#[derive(Clone, Default)]
struct EbbData {
filled: bool,
pristine: bool,
user_arg_count: usize,
}
struct Position {
ebb: Ebb,
basic_block: Block,
}
impl<Variable> ILBuilder<Variable>
where
Variable: EntityRef + Default,
{
/// Creates a ILBuilder structure. The structure is automatically cleared each time it is
/// passed to a [`FunctionBuilder`](struct.FunctionBuilder.html) for creation.
pub fn new() -> Self {
Self {
ssa: SSABuilder::new(),
ebbs: EntityMap::new(),
types: EntityMap::new(),
function_args_values: Vec::new(),
}
}
fn clear(&mut self) {
self.ssa.clear();
self.ebbs.clear();
self.types.clear();
self.function_args_values.clear();
}
}
/// Implementation of the [`InstBuilder`](../cretonne/ir/builder/trait.InstBuilder.html) that has
/// one convenience method per Cretonne IL instruction.
pub struct FuncInstBuilder<'short, 'long: 'short, Variable: 'long>
where
Variable: EntityRef + Default,
{
builder: &'short mut FunctionBuilder<'long, Variable>,
ebb: Ebb,
}
impl<'short, 'long, Variable> FuncInstBuilder<'short, 'long, Variable>
where
Variable: EntityRef + Default,
{
fn new<'s, 'l>(
builder: &'s mut FunctionBuilder<'l, Variable>,
ebb: Ebb,
) -> FuncInstBuilder<'s, 'l, Variable> {
FuncInstBuilder { builder, ebb }
}
}
impl<'short, 'long, Variable> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long, Variable>
where Variable: EntityRef + Default
{
fn data_flow_graph(&self) -> &DataFlowGraph {
&self.builder.func.dfg
}
fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
&mut self.builder.func.dfg
}
// This implementation is richer than `InsertBuilder` because we use the data of the
// instruction being inserted to add related info to the DFG and the SSA building system,
// and perform debug sanity checks.
fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) {
if data.opcode().is_return() {
self.builder
.check_return_args(data.arguments(&self.builder.func.dfg.value_lists));
}
// We only insert the Ebb in the layout when an instruction is added to it
self.builder.ensure_inserted_ebb();
let inst = self.builder.func.dfg.make_inst(data.clone());
self.builder.func.dfg.make_inst_results(inst, ctrl_typevar);
self.builder.func.layout.append_inst(inst, self.ebb);
if data.opcode().is_branch() {
match data.branch_destination() {
Some(dest_ebb) => {
// If the user has supplied jump arguments we must adapt the arguments of
// the destination ebb
// TODO: find a way not to allocate a vector
let args_types: Vec<Type> =
match data.analyze_branch(&self.builder.func.dfg.value_lists) {
BranchInfo::SingleDest(_, args) => {
args.iter()
.map(|arg| self.builder.func.dfg.value_type(*arg))
.collect()
}
_ => panic!("should not happen"),
};
self.builder.ebb_args_adjustement(dest_ebb, &args_types);
self.builder.declare_successor(dest_ebb, inst);
}
None => {
// branch_destination() doesn't detect jump_tables
// If jump table we declare all entries successor
// TODO: not collect with vector?
if let InstructionData::BranchTable { table, .. } = data {
// Unlike all other jumps/branches, jump tables are
// capable of having the same successor appear
// multiple times, so we must deduplicate.
let mut unique = EntitySet::<Ebb>::new();
for dest_ebb in self.builder
.func
.jump_tables
.get(table)
.expect("you are referencing an undeclared jump table")
.entries()
.map(|(_, ebb)| ebb)
.filter(|dest_ebb| unique.insert(*dest_ebb))
.collect::<Vec<Ebb>>() {
self.builder.declare_successor(dest_ebb, inst)
}
}
}
}
}
if data.opcode().is_terminator() {
self.builder.fill_current_block()
} else if data.opcode().is_branch() {
self.builder.move_to_next_basic_block()
}
(inst, &mut self.builder.func.dfg)
}
}
/// This module allows you to create a function in Cretonne IL in a straightforward way, hiding
/// all the complexity of its internal representation.
///
/// The module is parametrized by one type which is the representation of variables in your
/// origin language. It offers a way to conveniently append instruction to your program flow.
/// You are responsible to split your instruction flow into extended blocks (declared with
/// `create_ebb`) whose properties are:
///
/// - branch and jump instructions can only point at the top of extended blocks;
/// - the last instruction of each block is a terminator instruction which has no natural sucessor,
/// and those instructions can only appear at the end of extended blocks.
///
/// The parameters of Cretonne IL instructions are Cretonne IL values, which can only be created
/// as results of other Cretonne IL instructions. To be able to create variables redefined multiple
/// times in your program, use the `def_var` and `use_var` command, that will maintain the
/// correspondance between your variables and Cretonne IL SSA values.
///
/// The first block for which you call `switch_to_block` will be assumed to be the beginning of
/// the function.
///
/// At creation, a `FunctionBuilder` instance borrows an already allocated `Function` which it
/// modifies with the information stored in the mutable borrowed
/// [`ILBuilder`](struct.ILBuilder.html). The function passed in argument should be newly created
/// with [`Function::with_name_signature()`](../function/struct.Function.html), whereas the
/// `ILBuilder` can be kept as is between two function translations.
///
/// # Errors
///
/// The functions below will panic in debug mode whenever you try to modify the Cretonne IL
/// function in a way that violate the coherence of the code. For instance: switching to a new
/// `Ebb` when you haven't filled the current one with a terminator instruction, inserting a
/// return instruction with arguments that don't match the function's signature.
impl<'a, Variable> FunctionBuilder<'a, Variable>
where
Variable: EntityRef + Default,
{
/// Creates a new FunctionBuilder structure that will operate on a `Function` using a
/// `IlBuilder`.
pub fn new(
func: &'a mut Function,
builder: &'a mut ILBuilder<Variable>,
) -> FunctionBuilder<'a, Variable> {
builder.clear();
FunctionBuilder {
func: func,
builder: builder,
position: Position {
ebb: Ebb::new(0),
basic_block: Block::new(0),
},
pristine: true,
}
}
/// Creates a new `Ebb` for the function and returns its reference.
pub fn create_ebb(&mut self) -> Ebb {
let ebb = self.func.dfg.make_ebb();
self.builder.ssa.declare_ebb_header_block(ebb);
self.builder.ebbs[ebb] = EbbData {
filled: false,
pristine: true,
user_arg_count: 0,
};
ebb
}
/// After the call to this function, new instructions will be inserted into the designated
/// block, in the order they are declared. You must declare the types of the Ebb arguments
/// you will use here.
///
/// When inserting the terminator instruction (which doesn't have a falltrough to its immediate
/// successor), the block will be declared filled and it will not be possible to append
/// instructions to it.
pub fn switch_to_block(&mut self, ebb: Ebb, jump_args: &[Type]) -> &[Value] {
if self.pristine {
self.fill_function_args_values(ebb);
}
if !self.builder.ebbs[self.position.ebb].pristine {
// First we check that the previous block has been filled.
debug_assert!(
self.is_unreachable() || self.builder.ebbs[self.position.ebb].filled,
"you have to fill your block before switching"
);
}
// We cannot switch to a filled block
debug_assert!(
!self.builder.ebbs[ebb].filled,
"you cannot switch to a block which is already filled"
);
let basic_block = self.builder.ssa.header_block(ebb);
// Then we change the cursor position.
self.position = Position { ebb, basic_block };
self.ebb_args_adjustement(ebb, jump_args);
self.func.dfg.ebb_args(ebb)
}
/// Declares that all the predecessors of this block are known.
///
/// Function to call with `ebb` as soon as the last branch instruction to `ebb` has been
/// created. Forgetting to call this method on every block will cause inconsistences in the
/// produced functions.
pub fn seal_block(&mut self, ebb: Ebb) {
let side_effects = self.builder.ssa.seal_ebb_header_block(
ebb,
&mut self.func.dfg,
&mut self.func.layout,
&mut self.func.jump_tables,
);
self.handle_ssa_side_effects(side_effects);
}
/// In order to use a variable in a `use_var`, you need to declare its type with this method.
pub fn declare_var(&mut self, var: Variable, ty: Type) {
self.builder.types[var] = ty;
}
/// Returns the Cretonne IL value corresponding to the utilization at the current program
/// position of a previously defined user variable.
pub fn use_var(&mut self, var: Variable) -> Value {
let ty = *self.builder.types.get(var).expect(
"this variable is used but its type has not been declared",
);
let (val, side_effects) = self.builder.ssa.use_var(
&mut self.func.dfg,
&mut self.func.layout,
&mut self.func.jump_tables,
var,
ty,
self.position.basic_block,
);
self.handle_ssa_side_effects(side_effects);
val
}
/// Register a new definition of a user variable. Panics if the type of the value is not the
/// same as the type registered for the variable.
pub fn def_var(&mut self, var: Variable, val: Value) {
debug_assert_eq!(
self.func.dfg.value_type(val),
self.builder.types[var],
"the type of the value is not the type registered for the variable"
);
self.builder.ssa.def_var(
var,
val,
self.position.basic_block,
);
}
/// Returns the value corresponding to the `i`-th argument of the function as defined by
/// the function signature. Panics if `i` is out of bounds or if called before the first call
/// to `switch_to_block`.
pub fn arg_value(&self, i: usize) -> Value {
debug_assert!(!self.pristine, "you have to call switch_to_block first.");
self.builder.function_args_values[i]
}
/// Creates a jump table in the function, to be used by `br_table` instructions.
pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable {
self.func.create_jump_table(data)
}
/// Inserts an entry in a previously declared jump table.
pub fn insert_jump_table_entry(&mut self, jt: JumpTable, index: usize, ebb: Ebb) {
self.func.insert_jump_table_entry(jt, index, ebb)
}
/// Creates a stack slot in the function, to be used by `stack_load`, `stack_store` and
/// `stack_addr` instructions.
pub fn create_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
self.func.create_stack_slot(data)
}
/// Adds a signature which can later be used to declare an external function import.
pub fn import_signature(&mut self, signature: Signature) -> SigRef {
self.func.import_signature(signature)
}
/// Declare an external function import.
pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
self.func.import_function(data)
}
/// Declares a global variable accessible to the function.
pub fn create_global_var(&mut self, data: GlobalVarData) -> GlobalVar {
self.func.create_global_var(data)
}
/// Declares a heap accessible to the function.
pub fn create_heap(&mut self, data: HeapData) -> Heap {
self.func.create_heap(data)
}
/// Returns an object with the [`InstBuilder`](../cretonne/ir/builder/trait.InstBuilder.html)
/// trait that allows to conveniently append an instruction to the current `Ebb` being built.
pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a, Variable> {
let ebb = self.position.ebb;
FuncInstBuilder::new(self, ebb)
}
/// Make sure that the current EBB is inserted in the layout.
pub fn ensure_inserted_ebb(&mut self) {
let ebb = self.position.ebb;
if self.builder.ebbs[ebb].pristine {
if !self.func.layout.is_ebb_inserted(ebb) {
self.func.layout.append_ebb(ebb);
}
self.builder.ebbs[ebb].pristine = false;
} else {
debug_assert!(
!self.builder.ebbs[ebb].filled,
"you cannot add an instruction to a block already filled"
);
}
}
/// Returns a `FuncCursor` pointed at the current position ready for inserting instructions.
///
/// This can be used to insert SSA code that doesn't need to access locals and that doesn't
/// need to know about `FunctionBuilder` at all.
pub fn cursor<'f>(&'f mut self) -> FuncCursor<'f> {
self.ensure_inserted_ebb();
FuncCursor::new(self.func).at_bottom(self.position.ebb)
}
}
/// All the functions documented in the previous block are write-only and help you build a valid
/// Cretonne IL functions via multiple debug asserts. However, you might need to improve the
/// performance of your translation perform more complex transformations to your Cretonne IL
/// function. The functions below help you inspect the function you're creating and modify it
/// in ways that can be unsafe if used incorrectly.
impl<'a, Variable> FunctionBuilder<'a, Variable>
where
Variable: EntityRef + Default,
{
/// Retrieves all the arguments for an `Ebb` currently infered from the jump instructions
/// inserted that target it and the SSA construction.
pub fn ebb_args(&self, ebb: Ebb) -> &[Value] {
self.func.dfg.ebb_args(ebb)
}
/// Retrieves the signature with reference `sigref` previously added with `import_signature`.
pub fn signature(&self, sigref: SigRef) -> Option<&Signature> {
self.func.dfg.signatures.get(sigref)
}
/// Creates an argument for a specific `Ebb` by appending it to the list of already existing
/// arguments.
///
/// **Note:** this function has to be called at the creation of the `Ebb` before adding
/// instructions to it, otherwise this could interfere with SSA construction.
pub fn append_ebb_arg(&mut self, ebb: Ebb, ty: Type) -> Value {
debug_assert!(self.builder.ebbs[ebb].pristine);
self.func.dfg.append_ebb_arg(ebb, ty)
}
/// Returns the result values of an instruction.
pub fn inst_results(&self, inst: Inst) -> &[Value] {
self.func.dfg.inst_results(inst)
}
/// Changes the destination of a jump instruction after creation.
///
/// **Note:** You are responsible for maintaining the coherence with the arguments of
/// other jump instructions.
pub fn change_jump_destination(&mut self, inst: Inst, new_dest: Ebb) {
let old_dest = self.func.dfg[inst].branch_destination_mut().expect(
"you want to change the jump destination of a non-jump instruction",
);
let pred = self.builder.ssa.remove_ebb_predecessor(*old_dest, inst);
*old_dest = new_dest;
self.builder.ssa.declare_ebb_predecessor(
new_dest,
pred,
inst,
);
}
/// Returns `true` if and only if the current `Ebb` is sealed and has no predecessors declared.
///
/// The entry block of a function is never unreachable.
pub fn is_unreachable(&self) -> bool {
let is_entry = match self.func.layout.entry_block() {
None => false,
Some(entry) => self.position.ebb == entry,
};
(!is_entry && self.builder.ssa.is_sealed(self.position.ebb) &&
self.builder.ssa.predecessors(self.position.ebb).is_empty())
}
/// Returns `true` if and only if no instructions have been added since the last call to
/// `switch_to_block`.
pub fn is_pristine(&self) -> bool {
self.builder.ebbs[self.position.ebb].pristine
}
/// Returns `true` if and only if a terminator instruction has been inserted since the
/// last call to `switch_to_block`.
pub fn is_filled(&self) -> bool {
self.builder.ebbs[self.position.ebb].filled
}
/// Returns a displayable object for the function as it is.
///
/// Useful for debug purposes. Use it with `None` for standard printing.
pub fn display<'b, I: Into<Option<&'b TargetIsa>>>(&'b self, isa: I) -> DisplayFunction {
self.func.display(isa)
}
}
impl<'a, Variable> Drop for FunctionBuilder<'a, Variable>
where
Variable: EntityRef + Default,
{
/// When a `FunctionBuilder` goes out of scope, it means that the function is fully built.
/// We then proceed to check if all the `Ebb`s are filled and sealed
fn drop(&mut self) {
debug_assert!(
self.builder.ebbs.keys().all(|ebb| {
self.builder.ebbs[ebb].pristine ||
(self.builder.ssa.is_sealed(ebb) && self.builder.ebbs[ebb].filled)
}),
"all blocks should be filled and sealed before dropping a FunctionBuilder"
)
}
}
// Helper functions
impl<'a, Variable> FunctionBuilder<'a, Variable>
where
Variable: EntityRef + Default,
{
fn move_to_next_basic_block(&mut self) {
self.position.basic_block = self.builder.ssa.declare_ebb_body_block(
self.position.basic_block,
);
}
fn fill_current_block(&mut self) {
self.builder.ebbs[self.position.ebb].filled = true;
}
fn declare_successor(&mut self, dest_ebb: Ebb, jump_inst: Inst) {
self.builder.ssa.declare_ebb_predecessor(
dest_ebb,
self.position.basic_block,
jump_inst,
);
}
fn check_return_args(&self, args: &[Value]) {
debug_assert_eq!(
args.len(),
self.func.signature.return_types.len(),
"the number of returned values doesn't match the function signature "
);
for (i, arg) in args.iter().enumerate() {
let valty = self.func.dfg.value_type(*arg);
debug_assert_eq!(
valty,
self.func.signature.return_types[i].value_type,
"the types of the values returned don't match the \
function signature"
);
}
}
fn fill_function_args_values(&mut self, ebb: Ebb) {
debug_assert!(self.pristine);
for argtyp in &self.func.signature.argument_types {
self.builder.function_args_values.push(
self.func.dfg.append_ebb_arg(ebb, argtyp.value_type),
);
}
self.pristine = false;
}
fn ebb_args_adjustement(&mut self, dest_ebb: Ebb, jump_args: &[Type]) {
let ty_to_append: Option<Vec<Type>> =
if self.builder.ssa.predecessors(dest_ebb).is_empty() ||
self.builder.ebbs[dest_ebb].pristine
{
// This is the first jump instruction targeting this Ebb
// so the jump arguments supplied here are this Ebb' arguments
// However some of the arguments might already be there
// in the Ebb so we have to check they're consistent
let dest_ebb_args = self.func.dfg.ebb_args(dest_ebb);
debug_assert!(
dest_ebb_args
.iter()
.zip(jump_args.iter().take(dest_ebb_args.len()))
.all(|(dest_arg, jump_arg)| {
*jump_arg == self.func.dfg.value_type(*dest_arg)
}),
"the jump argument supplied has not the \
same type as the corresponding dest ebb argument"
);
self.builder.ebbs[dest_ebb].user_arg_count = jump_args.len();
Some(
jump_args
.iter()
.skip(dest_ebb_args.len())
.cloned()
.collect(),
)
} else {
let dest_ebb_args = self.func.dfg.ebb_args(dest_ebb);
// The Ebb already has predecessors
// We check that the arguments supplied match those supplied
// previously.
debug_assert_eq!(
jump_args.len(),
self.builder.ebbs[dest_ebb].user_arg_count,
"the jump instruction doesn't have the same \
number of arguments as its destination Ebb \
({} vs {}).",
jump_args.len(),
dest_ebb_args.len()
);
debug_assert!(
jump_args
.iter()
.zip(dest_ebb_args.iter().take(
self.builder.ebbs[dest_ebb].user_arg_count,
))
.all(|(jump_arg, dest_arg)| {
*jump_arg == self.func.dfg.value_type(*dest_arg)
}),
"the jump argument supplied has not the \
same type as the corresponding dest ebb argument"
);
None
};
if let Some(ty_args) = ty_to_append {
for ty in ty_args {
self.func.dfg.append_ebb_arg(dest_ebb, ty);
}
}
}
fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) {
for split_ebb in side_effects.split_ebbs_created {
self.builder.ebbs[split_ebb].filled = true
}
for modified_ebb in side_effects.instructions_added_to_ebbs {
self.builder.ebbs[modified_ebb].pristine = false
}
}
}
#[cfg(test)]
mod tests {
use cretonne::entity::EntityRef;
use cretonne::ir::{FunctionName, Function, CallConv, Signature, ArgumentType, InstBuilder};
use cretonne::ir::types::*;
use frontend::{ILBuilder, FunctionBuilder};
use cretonne::verifier::verify_function;
use cretonne::settings;
use std::u32;
// An opaque reference to variable.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Variable(u32);
impl EntityRef for Variable {
fn new(index: usize) -> Self {
assert!(index < (u32::MAX as usize));
Variable(index as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
impl Default for Variable {
fn default() -> Variable {
Variable(u32::MAX)
}
}
#[test]
fn sample_function() {
let mut sig = Signature::new(CallConv::Native);
sig.return_types.push(ArgumentType::new(I32));
sig.argument_types.push(ArgumentType::new(I32));
let mut il_builder = ILBuilder::<Variable>::new();
let mut func = Function::with_name_signature(FunctionName::new("sample_function"), sig);
{
let mut builder = FunctionBuilder::<Variable>::new(&mut func, &mut il_builder);
let block0 = builder.create_ebb();
let block1 = builder.create_ebb();
let block2 = builder.create_ebb();
let x = Variable(0);
let y = Variable(1);
let z = Variable(2);
builder.declare_var(x, I32);
builder.declare_var(y, I32);
builder.declare_var(z, I32);
builder.switch_to_block(block0, &[]);
builder.seal_block(block0);
{
let tmp = builder.arg_value(0);
builder.def_var(x, tmp);
}
{
let tmp = builder.ins().iconst(I32, 2);
builder.def_var(y, tmp);
}
{
let arg1 = builder.use_var(x);
let arg2 = builder.use_var(y);
let tmp = builder.ins().iadd(arg1, arg2);
builder.def_var(z, tmp);
}
builder.ins().jump(block1, &[]);
builder.switch_to_block(block1, &[]);
{
let arg1 = builder.use_var(y);
let arg2 = builder.use_var(z);
let tmp = builder.ins().iadd(arg1, arg2);
builder.def_var(z, tmp);
}
{
let arg = builder.use_var(y);
builder.ins().brnz(arg, block2, &[]);
}
{
let arg1 = builder.use_var(z);
let arg2 = builder.use_var(x);
let tmp = builder.ins().isub(arg1, arg2);
builder.def_var(z, tmp);
}
{
let arg = builder.use_var(y);
builder.ins().return_(&[arg]);
}
builder.switch_to_block(block2, &[]);
builder.seal_block(block2);
{
let arg1 = builder.use_var(y);
let arg2 = builder.use_var(x);
let tmp = builder.ins().isub(arg1, arg2);
builder.def_var(y, tmp);
}
builder.ins().jump(block1, &[]);
builder.seal_block(block1);
}
let flags = settings::Flags::new(&settings::builder());
let res = verify_function(&func, &flags);
// println!("{}", func.display(None));
match res {
Ok(_) => {}
Err(err) => panic!("{}{}", func.display(None), err),
}
}
}